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Preface

Prerequisites There is one main prerequisite: basic probability. This course assumes

you’ve taken an introduction to probability course or have had equivalent experience.

Topics from statistics and machine learning will pop up in the course from time to

time, so some familiarity with those will be helpful but is not necessary. For example, if

cross-validation is a new concept to you, you can learn it relatively quickly at the point in

the book that it pops up. And we give a primer on some statistics terminology that we’ll

use in Section 2.4.

Active Reading Exercises Research shows that one of the best techniques to remember

material is to actively try to recall information that you recently learned. You will see

“active reading exercises” throughout the book to help you do this. They’ll be marked by

the Active reading exercise: heading.

Many Figures in This Book As you will see, there are a ridiculous amount of figures in

this book. This is on purpose. This is to help give you as much visual intuition as possible.

We will sometimes copy the same figures, equations, etc. that you might have seen in

preceding chapters so that we can make sure the figures are always right next to the text

that references them.

Sending Me Feedback This is a book draft, so I greatly appreciate any feedback you’re

willing to send my way. If you’re unsure whether I’ll be receptive to it or not, don’t be.

Please send any feedback to me at bradyneal11@gmail.com with “[Causal Book]” in the

beginning of your email subject. Feedback can be at the word level, sentence level, section

level, chapter level, etc. Here’s a non-exhaustive list of useful kinds of feedback:

I Typoz.

I Some part is confusing.

I You notice your mind starts to wander, or you don’t feel motivated to read some

part.

I Some part seems like it can be cut.

I You feel strongly that some part absolutely should not be cut.

I Some parts are not connected well. Moving from one part to the next, you notice

that there isn’t a natural flow.

I A new active reading exercise you thought of.

Bibliographic Notes Although we do our best to cite relevant results, we don’t want to

disrupt the flow of the material by digging into exactly where each concept came from.

There will be complete sections of bibliographic notes in the final version of this book,

but they won’t come until after the course has finished.
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1
A key ingredient necessary to find Simp-

son’s paradox is the non-uniformity of
allocation of people to the groups. 1400
of the 1500 people who received treatment

A had mild condition, whereas 500 of

the 550 people who received treatment

B had severe condition. Because people

with mild condition are less likely to die,

this means that the total mortality rate

for those with treatment A is lower than

what it would have been if mild and severe

conditions were equally split among them.

The opposite bias is true for treatment B.

Motivation: Why YouMight Care 1
1.1 Simpson’s Paradox . . . . . 1
1.2 Applications of Causal Infer-

ence . . . . . . . . . . . . . . 2
1.3 Correlation Does Not Imply

Causation . . . . . . . . . . 3
Nicolas Cage and Pool
Drownings . . . . . . . . . . 3

Why is Association Not Cau-
sation? . . . . . . . . . . . . 4

1.4 Main Themes . . . . . . . . . 5

1.1 Simpson’s Paradox

Consider a purely hypothetical futurewhere there is a newdisease known

as COVID-27 that is prevalent in the human population. In this purely

hypothetical future, there are two treatments that have been developed:

treatment A and treatment B. Treatment B is more scarce than treatment

A, so the split of those currently receiving treatment A vs. treatment

B is roughly 73%/27%. You are in charge of choosing which treatment

your country will exclusively use, in a country that only cares about

minimizing loss of life.

You have data on the percentage of people who die from COVID-27,

given the treatment they were assigned and given their condition at the

time treatment was decided. Their condition is a binary variable: either

mild or severe. In this data, 16% of those who receive A die, whereas

19% of those who receive B die. However, when we examine the people

with mild condition separately from the people with severe condition,

the numbers reverse order. In the mild subpopulation, 15% of those who

receive A die, whereas 10% of those who receive B die. In the severe

subpopulation, 30% of those who receive A die, whereas 20% of those

who receive B die. We depict these percentages and the corresponding

counts in Table 1.1.

Condition
Mild Severe Total

Tr
ea
tm
en
t

A

15%

(210/1400)

30%

(30/100)

16%
(240/1500)

B

10%
(5/50)

20%
(100/500)

19%

(105/550)

Table 1.1: Simpson’s paradox in COVID-27

data. The percentages denote themortality

rates in each of the groups. Lower is better.

The numbers in parentheses are the corre-

sponding counts. This apparent paradox

stems from the interpretation that treat-

ment A looks better when examining the

whole population, but treatment B looks

better in all subpopulations.

The apparent paradox stems from the fact that, in Table 1.1, the “Total”

column could be interpreted to mean that we should prefer treatment

A, whereas the “Mild” and “Severe” columns could both be interpreted

to mean that we should prefer treatment B.
1
In fact, the answer is that if

we know someone’s condition, we should give them treatment B, and if

we do not know their condition, we should give them treatment A. Just

kidding... that doesn’t make any sense. So really, what treatment should

you choose for your country?

Either treatment A or treatment B could be the right answer, depending

on the causal structure of the data. In other words, causality is essential to

solve Simpson’s paradox. For now, wewill just give the intuition for when

you should prefer treatment A vs. when you should prefer treatment B,

but it will be made more formal in Chapter 4.
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2 ) refers to the prescription of the treat-

ment, rather than the subsequent recep-

tion of the treatment.

Scenario 1 If the condition � is a cause of the treatment ) (Figure

1.1), treatment B is more effective at reducing mortality .. An example

scenario is where doctors decide to give treatment A to most people

who have mild conditions. And they save the more expensive and more

limited treatment B for people with severe conditions. Because having

severe condition causes one to be more likely to die (� → . in Figure

1.1) and causes one to be more likely to receive treatment B (� → )

in Figure 1.1), treatment B will be associated with higher mortality in

the total population. In other words, treatment B is associated with a

higher mortality rate simply because condition is a common cause of

both treatment and mortality. Here, condition confounds the effect of

treatment on mortality. To correct for this confounding, we must examine

the relationship of ) and . among patients with the same conditions.

This means that the better treatment is the one that yields lower mortality

in each of the subpopulations (the “Mild” and “Severe” columns in Table

1.1): treatment B.

�

) .

Figure 1.1: Causal structure of scenario 1,

where condition � is a common cause of

treatment ) and mortality .. Given this

causal structure, treatment B is preferable.

Scenario 2 If the prescription
2
of treatment) is a cause of the condition

� (Figure 1.2), treatment A is more effective. An example scenario is

where treatment B is so scarce that it requires patients to wait a long

time after they were prescribed the treatment before they can receive

the treatment. Treatment A does not have this problem. Because the

condition of a patient with COVID-27 worsens over time, the prescription

of treatment B actually causes patients with mild conditions to develop

severe conditions, causing a higher mortality rate. Therefore, even if

treatment B is more effective than treatment A once administered (positive
effect along ) → . in Figure 1.2), because prescription of treatment B

causes worse conditions (negative effect along ) → � → . in Figure

1.2), treatment B is less effective in total. Note: Because treatment B is

more expensive, treatment B is prescribed with 0.27 probability, while

treatment A is prescribed with 0.73 probability; importantly, treatment

prescription is independent of condition in this scenario.

) �

.

Figure 1.2: Causal structure of scenario 2,

where treatment ) is a cause of condition

�. Given this causal structure, treatment

A is preferable.

In sum, the more effective treatment is completely dependent on the

causal structure of the problem. In Scenario 1, where � was a cause of

) (Figure 1.1), treatment B was more effective. In Scenario 2, where )

was a cause of � (Figure 1.2), treatment A was more effective. Without

causality, Simpson’s paradox cannot be resolved. With causality, it is not

a paradox at all.

1.2 Applications of Causal Inference

Causal inference is essential to science, as we often want to make causal

claims, rather than merely associational claims. For example, if we

are choosing between treatments for a disease, we want to choose the

treatment that causes the most people to be cured, without causing too

many bad side effects. If we want a reinforcement learning algorithm to

maximize reward, we want it to take actions that cause it to achieve the

maximum reward. If we are studying the effect of social media on mental

health, we are trying to understand what the main causes of a given

mental health outcome are and order these causes by the percentage of

the outcome that can be attributed to each cause.
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[1]: Vigen (2015), Spurious correlations

Causal inference is essential for rigorous decision-making. For example,

say we are considering several different policies to implement to reduce

greenhouse gas emissions, and we must choose just one due to budget

constraints. If we want to be maximally effective, we should carry out

causal analysis to determine which policy will cause the largest reduc-

tion in emissions. As another example, say we are considering several

interventions to reduce global poverty. We want to know which policies

will cause the largest reductions in poverty.

Now that we’ve gone through the general example of Simpson’s paradox

and a few specific examples in science and decision-making, we’ll move

to how causal inference is so different from prediction.

1.3 Correlation Does Not Imply Causation

Many of you will have heard the mantra “correlation does not imply

causation.” In this section, we will quickly review that and provide you

with a bit more intuition about why this is the case.

1.3.1 Nicolas Cage and Pool Drownings

It turns out that the yearly number of people who drown by falling into

swimming pools has a high degree of correlation with the yearly number

of films that Nicolas Cage appears in [1]. See Figure 1.3 for a graph of this

data. Does this mean that Nicolas Cage encourages bad swimmers to

hop in the pool in his films? Or does Nicolas Cage feel more motivated to

act in more films when he sees how many drownings are happening that

year, perhaps to try to prevent more drownings? Or is there some other

explanation? For example, maybe Nicolas Cage is interested in increasing

his popularity among causal inference practitioners, so he travels back in

time to convince his past self to do just the right number of movies for us

to see this correlation, but not too close of a match as that would arouse

suspicion and potentially cause someone to prevent him from rigging

the data this way. We may never know for sure.

N
icholas	Cage

Sw
im

m
in
g	
po

ol
	d
ro
w
ni
ng

s

Number	of	people	who	drowned	by	falling	into	a	pool
	correlates	with	

Films	Nicolas	Cage	appeared	in

Nicholas	Cage Swimming	pool	drownings

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

0	films

2	films

4	films

6	films

80	drownings

100	drownings

120	drownings

140	drownings

tylervigen.com

Figure 1.3: The yearly number of movies Nicolas Cage appears in correlates with the yearly number of pool drownings [1].

Of course, all of the possible explanations in the preceding paragraph

seem quite unlikely. Rather, it is likely that this is a spurious correlation,
where there is no causal relationship. We’ll soon move on to a more
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illustrative example that will help clarify how spurious correlations can

arise.

1.3.2 Why is Association Not Causation?

Before moving to the next example, let’s be a bit more precise about

terminology. “Correlation” is often colloquially used as a synonym

for statistical dependence. However, “correlation” is technically only a

measure of linear statistical dependence. We will largely be using the

term association to refer to statistical dependence from now on.

Causation is not binary. For any given amount of association, it does not

need to be “all the association is causation” or “no causation.” It is possible

to have some causation while having a large amount of association. The

phrase “association is not causation” simply means that the amount of

association and the amount of causation can be different. Some amount

of association and zero causation is a special case of “association is not

causation.”

Say you happen upon some data that relates wearing shoes to bed and

waking up with a headache, as one does. It turns out that most times

that someone wears shoes to bed, that person wakes up with a headache.

And most times someone doesn’t wear shoes to bed, that person doesn’t

wake up with a headache. It is not uncommon for people to interpret

data like this (with associations) as meaning that wearing shoes to bed

causes people to wake up with headaches, especially if they are looking

for a reason to justify not wearing shoes to bed. A careful journalist might

make claims like “wearing shoes to bed is associated with headaches”

or “people who wear shoes to bed are at higher risk of waking up with

headaches.” However, the main reason to make claims like that is that

most people will internalize claims like that as “if I wear shoes to bed,

I’ll probably wake up with a headache.”

We can explain how wearing shoes to bed and headaches are associated

without either being a cause of the other. It turns out that they are

both caused by a common cause: drinking the night before. We depict

this in Figure 1.4. You might also hear this kind of variable referred

to as a “confounder” or a “lurking variable.” We will call this kind of

association confounding association since the association is facilitated by a

confounder.

Figure 1.4: Causal structure, where drink-

ing the night before is a common cause of

sleeping with shoes on and of waking up

with a headaches.

The total association observed can be made up of both confounding

association and causal association. It could be the case that wearing shoes

to bed does have some small causal effect on waking up with a headache.

Then, the total association would not be solely confounding association

nor solely causal association. It would be a mixture of both. For example,

in Figure 1.4, causal association flows along the arrow from shoe-sleeping

to waking up with a headache. And confounding association flows along

the path from shoe-sleeping to drinking to headachening (waking up

with a headache). We will make the graphical interpretation of these

different kinds of association clear in Chapter 3.
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The Main Problem The main problem motivating causal inference is

that association is not causation.
3 3

Aswe’ll see in Chapter 5, if we randomly

assign the treatment in a controlled exper-

iment, association actually is causation.

If the two were the same, then causal

inference would be easy. Traditional statistics and machine learning

would already have causal inference solved, as measuring causation

would be as simple as just looking at measures such as correlation and

predictive performance in data. A large portion of this book will be about

better understanding and solving this problem.

1.4 Main Themes

There are several overarching themes that will keep coming up through-

out this book. These themes will largely be comparisons of two different

categories. As you are reading, it is important that you understand which

categories different sections of the book fit into and which categories

they do not fit into.

Statistical vs. Causal Even with an infinite amount of data, we some-

times cannot compute some causal quantities. In contrast, much of

statistics is about addressing uncertainty in finite samples. When given

infinite data, there is no uncertainty. However, association, a statistical

concept, is not causation. There is more work to be done in causal infer-

ence, even after starting with infinite data. This is the main distinction

motivating causal inference. We have already made this distinction in

this chapter and will continue to make this distinction throughout the

book.

Identification vs. Estimation Identification of causal effects is unique

to causal inference. It is the problem that remains to solve, even when we

have infinite data. However, causal inference also shares estimation with

traditional statistics and machine learning. We will largely begin with

identification of causal effects (in Chapters 2, 4 and 6) before moving to

estimation of causal effects (in Chapter 7). The exceptions are Section 2.5

and Section 4.6.2, where we carry out complete examples with estimation

to give you an idea of what the whole process looks like early on.

Interventional vs. Observational If we can intervene/experiment,

identification of causal effects is relatively easy. This is simply because

we can actually take the action that we want to measure the causal effect

of and simply measure the effect after we take that action. Observational

data is where it gets more complicated because confounding is almost

always introduced into the data.

Assumptions There will be a large focus on what assumptions we are

using to get the results that we get. Each assumption will have its own

box to help make it difficult to not notice. Clear assumptions should make

it easy to see where critiques of a given causal analysis or causal model

will be. The hope is that presenting assumptions clearly will lead to more

lucid discussions about causality.
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In this chapter, we will ease into the world of causality. We will see that

new concepts and corresponding notations need to be introduced to

clearly describe causal concepts. These concepts are “new” in the sense

that they may not exist in traditional statistics or math, but they should

be familiar in that we use them in our thinking and describe them with

natural language all the time.

Familiar statistical notation We will use ) to denote the random vari-

able for treatment, . to denote the random variable for the outcome of

interest and - to denote covariates. In general, we will use uppercase

letters to denote random variables (except in maybe one case) and lower-

case letters to denote values that random variables take on. Much of what

we consider will be settings where ) is binary. Know that, in general, we

can extend things to work in settings where ) can take on more than two

values or where ) is continuous.

2.1 Potential Outcomes and Individual
Treatment Effects

We will now introduce the first causal concept to appear in this book.

These concepts are sometimes characterized as being unique to the

Neyman-Rubin [2–4] causal model (or potential outcomes framework),

but they are not. For example, these same concepts are still present

(just under different notation) in the framework that uses causal graphs

(Chapters 3 and 4). It is important that you spend some time ensuring

that you understand these initial causal concepts. If you have not studied

causal inference before, they will be unfamiliar to see in mathematical

contexts, though they may be quite familiar intuitively because we

commonly think and communicate in causal language.

Scenario 1 Consider the scenario where you are unhappy. And you are

considering whether or not to get a dog to help make you happy. If you

become happy after you get the dog, does this mean the dog caused you

to be happy? Well, what if you would have also become happy had you

not gotten the dog? In that case, the dog was not necessary to make you

happy, so its claim to a causal effect on your happiness is weak.

Scenario 2 Let’s switch things up a bit. Consider that you will still be

happy if you get a dog, but now, if you don’t get a dog, you will remain

unhappy. In this scenario, the dog has a pretty strong claim to a causal

effect on your happiness.

In both the above scenarios, we have used the causal concept known as

potential outcomes. Your outcome . is happiness: . = 1 corresponds to

happy while. = 0 corresponds to unhappy. Your treatment ) is whether

or not you get a dog: ) = 1 corresponds to you getting a dog while ) = 0
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1
“Unit” is often used in the place of “indi-

vidual” as the units of the population are

not always people.

2
The ITE is also known as the individual

causal effect, unit-level causal effect, or unit-
level treatment effect.

3
Though, .8(C) can be treated as random.

[3]: Rubin (1974), ‘Estimating causal effects

of treatments in randomized and nonran-

domized studies.’

corresponds to you not getting a dog. We denote by .(1) the potential
outcome of happiness you would observe if you were to get a dog () = 1).

Similarly, we denote by .(0) the potential outcome of happiness you

would observe if you were to not get a dog () = 0). In scenario 1,.(1) = 1

and .(0) = 1. In contrast, in scenario 2, .(1) = 1 and .(0) = 0.

More generally, the potential outcome .(C) denotes what your outcome

would be, if you were to take treatment C. A potential outcome .(C) is
distinct from the observed outcome . in that not all potential outcomes

are observed. Rather all potential outcomes can potentially be observed.
The one that is actually observed depends on the value that the treatment

) takes on.

In the previous scenarios, there was only a single individual in the whole

population: you. However, generally, there are many individuals
1
in

the population of interest. We will denote the treatment, covariates, and

outcome of the 8th individual using )8 , -8 , and .8 . Then, we can define

the individual treatment effect (ITE) 2
for individual 8:

�8 , .8(1) − .8(0) (2.1)

Whenever there is more than one individual in a population,.(C) is a ran-
dom variable because different individuals will have different potential

outcomes. In contrast, .8(C) is usually treated as non-random
3
because

the subscript 8 means that we are conditioning on so much individual-

ized (and context-specific) information, that we restrict our focus to a

single individual (in a specific context) whose potential outcomes are

deterministic.

ITEs are some of the main quantities that we care about in causal

inference. For example, in scenario 2 above, you would choose to get

a dog because the causal effect of getting a dog on your happiness is

positive: .(1) − .(0) = 1 − 0 = 1. In contrast, in scenario 1, you might

choose to not get a dog because there is no causal effect of getting a dog

on your happiness: .(1) − .(0) = 1 − 1 = 0.

Now that we’ve introduced potential outcomes and ITEs, we can intro-

duce the main problems that pop up in causal inference that are not

present in fields where the main focus is on association or prediction.

2.2 The Fundamental Problem of Causal
Inference

It is impossible to observe all potential outcomes for a given individual

[3] . Consider the dog example. You could observe .(1) by getting a dog

and observing your happiness after getting a dog. Alternatively, you

could observe .(0) by not getting a dog and observing your happiness.

However, you cannot observe both .(1) and .(0), unless you have a time

machine that would allow you to go back in time and choose the version

of treatment that you didn’t take the first time. You cannot simply get

a dog, observe .(1), give the dog away, and then observe .(0) because
the second observation will be influenced by all the actions you took

between the two observations and anything else that changed since the

first observation.
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[5]: Holland (1986), ‘Statistics and Causal

Inference’

4
The ATE is also known as the “average

causal effect (ACE).”

This is known as the fundamental problem of causal inference [5]. It is

fundamental because if we cannot observe both .8(1) and .8(0), then we

cannot observe the causal effect .8(1) − .8(0). This problem is unique

to causal inference because, in causal inference, we care about making

causal claims, which are defined in terms of potential outcomes. For

contrast, consider machine learning. In machine learning, we often only

care about predicting the observed outcome ., so there is no need for

potential outcomes, which means machine learning does not have to

deal with this fundamental problem that we must deal with in causal

inference.

The potential outcomes that you do not (and cannot) observe are known

as counterfactuals because they are counter to fact (reality). “Potential

outcomes” are sometimes referred to as “counterfactual outcomes,” but

we will never do that in this book because a potential outcome .(C)
does not become counter to fact until another potential outcome .(C′) is
observed. The potential outcome that is observed is sometimes referred

to as a factual. Note that there are no counterfactuals or factuals until the

outcome is observed. Before that, there are only potential outcomes.

2.3 Getting Around the Fundamental Problem

I suspect this section is where this chapter might start to get a bit unclear.

If that is the case for you, don’t worry too much, and just continue to the

next chapter, as it will build up parallel concepts in a hopefully more

intuitive way.

2.3.1 Average Treatment Effects and Missing Data
Interpretation

We know that we can’t access individual treatment effects, but what

about average treatment effects? We get the average treatment effect (ATE)4
by taking an average over the ITEs:

� , E[.8(1) − .8(0)] = E[.(1) − .(0)] , (2.2)

where the average is over the individuals 8 if.8(C) is deterministic. If.8(C)
is random, the average is also over any other randomness.

Okay, but how would we actually compute the ATE? Let’s look at

some made-up data in Table 2.1 for this. If you like examples, feel free to

substitute in the COVID-27 example from Section 1.1 or the dog-happiness

example from Section 2.1. We will take this table as the whole population

of interest. Because of the fundamental problem of causal inference, this

is fundamentally a missing data problem. All of the question marks in

the table indicate that we do not observe that cell.

A natural quantity that comes to mind is the associational difference:
E[. |) = 1] − E[. |) = 0]. By linearity of expectation, we have that the

ATE E[.(1) −.(0)] = E[.(1)] −E[.(0)]. Then, maybe E[.(1)] −E[.(0)]
equals E[. |) = 1] −E[. |) = 0]. Unfortunately, this is not true in general.

If it were, that would mean that causation is simply association. E[. |) =

1] − E[. |) = 0] is an associational quantity, whereas E[.(1)] − E[.(0)]
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8 ) . .(1) .(0) .(1) − .(0)
1 0 0 ? 0 ?

2 1 1 1 ? ?

3 1 0 0 ? ?

4 0 0 ? 0 ?

5 0 1 ? 1 ?

6 1 1 1 ? ?

Table 2.1: Example data to illustrate that

the fundamental problem of causal infer-

ence can be interpreted as a missing data

problem.

6
Active reading exercise: verify that this

procedure is equivalent to E[. |) = 1] −
E[. |) = 0] in the data in Table 2.1.

-

) .

Figure 2.2: Causal structure when the

treatment assignment mechanism is ig-

norable. Notably, this means there’s no

arrow from - to ), which means there is

no confounding.

is a causal quantity. They are not equal due to confounding, which we

discussed in Section 1.3. The graphical interpretation of this, depicted in

Figure 2.1, is that - confounds the effect of ) on . because there is this

) ← - → . path that non-causal association flows along.

-

) .

Figure 2.1: Causal structure of - con-

founding the effect of ) on ..5

5
Keep reading to Chapter 3, where we

will flesh out and formalize this graphical

interpretation.

2.3.2 Ignorability and Exchangeability

Well, what assumption(s) would make it so that the ATE is simply the

associational difference? This is equivalent to saying “what makes it valid

to calculate the ATE by taking the sum of the .(0) column, ignoring the

question marks, and subtracting that from the sum of the .(1) column,

ignoring the question marks?”
6
This ignoring of the question marks

(missing data) is known as ignorability. Assuming ignorability is like

ignoring how people ended up selecting the treatment they selected and

just assuming they were randomly assigned their treatment; we depict

this graphically in Figure 2.2 by the lack of a causal arrow from - to ).

We will now state this assumption formally.

Assumption 2.1 (Ignorability / Exchangeability)

(.(1), .(0)) ⊥⊥ )

This assumption is key to causal inference because it allows us to reduce

the ATE to the associational difference:

E[.(1)] − E[.(0)] = E[.(1) | ) = 1] − E[.(0) | ) = 0] (2.3)

= E[. | ) = 1] − E[. | ) = 0] (2.4)

The ignorability assumption is used in Equation 2.3. We will talk more

about Equation 2.4 when we get to Section 2.3.5.

Another perspective on this assumption is that of exchangeability. Ex-
changeability means that the treatment groups are exchangeable in

the sense that if they were swapped, the new treatment group would

observe the same outcomes as the old treatment group, and the new

control group would observe the same outcomes as the old control

group. Formally, this assumption means E[.(1)|) = 0] = E[.(1)|) = 1]
and E[.(0)|) = 1] = E[.(0)|) = 0], respectively. Then, this implies

E[.(1)|) = C] = E[.(1)] and E[.(0)|) = C] = E[.(0)], for all C, which is

nearly equivalent
7

7
Technically, this is mean exchangeabil-

ity, which is a weaker assumption than the

full exchangeability that we describe inAs-

sumption 2.1 because it only constrains the

first moment of the distribution. Generally,

we only needmean ignorability/exchange-

ability for average treatment effects, but it

is common to assume complete indepen-

dence, as in Assumption 2.1.

to Assumption 2.1.

An important intuition to have about exchangeability is that it guarantees

that the treatment groups are comparable. In other words, the treatment

groups are the same in all relevant aspects other than the treatment. This

intuition is what underlies the concept of “controlling for” or “adjusting
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for” variables, which we will discuss shortly when we get to conditional

exchangeability.

We have leveraged Assumption 2.1 to identify causal effects. To identify
a causal effect is to reduce a causal expression to a purely statistical

expression. In this chapter, that means to reduce an expression from

one that uses potential outcome notation to one that uses only statistical

notation such as ), - ,., expectations, and conditioning. This means that

we can calculate the causal effect from just the observational distribution

%(-, ), .).

Definition 2.1 (Identifiability) A causal quantity (e.g. E[.(C)]) is identifi-
able if we can compute it from a purely statistical quantity (e.g. E[. | C]).

We have seen that ignorability is extremely important (Equation 2.3), but

how realistic of an assumption is it? In general, it is completely unrealistic

because there is likely to be confounding in most data we observe (causal

structure shown in Figure 2.1). However, we can make this assumption

realistic by running randomized experiments, which force the treatment

to not be caused by anything but a coin toss, so then we have the causal

structure shown in Figure 2.2. We cover randomized experiments in

greater depth in Chapter 5.

We have covered two prominent perspectives on this main assumption

(2.1): ignorability and exchangeability. Mathematically, these mean the

same thing, but their names correspond to different ways of thinking

about the same assumption. Exchangeability and ignorability are only

two names for this assumption. We will see more aliases after we cover

the more realistic, conditional version of this assumption.

2.3.3 Conditional Exchangeability and
Unconfoundedness

In observational data, it is unrealistic to assume that the treatment groups

are exchangeable. In other words, there is no reason to expect that the

groups are the same in all relevant variables other than the treatment.

However, if we control for relevant variables by conditioning, thenmaybe

the subgroups will be exchangeable. We will clarify what the “relevant

variables” are in Chapter 3, but for now, let’s just say they are all of the

covariates -. Then, we can state conditional exchangeability formally.

Assumption 2.2 (Conditional Exchangeability / Unconfoundedness)

(.(1), .(0)) ⊥⊥ ) | -

The idea is that although the treatment and potential outcomes may

be unconditionally associated (due to confounding), within levels of -,

they are not associated. In other words, there is no confounding within

levels of - because controlling for - has made the treatment groups

comparable. We’ll now give a bit of graphical intuition for the above. We

will not draw the rigorous connection between the graphical intuition

and Assumption 2.2 until Chapter 3; for now, it is just meant to aid

intuition.
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-

) .

Figure 2.3: Causal structure of - con-

founding the effect of ) on .. We depict

the confounding with a red dashed line.

-

) .

Figure 2.4: Illustration of conditioning on

- leading to no confounding.

We do not have exchangeability in the data because - is a common cause

of ) and .. We illustrate this in Figure 2.3. Because - is a common

cause of ) and ., there is non-causal association between ) and .. This

non-causal association flows along the ) ← - → . path; we depict this

with a red dashed arc.

However, we do have conditional exchangeability in the data. This is

because, when we condition on -, there is no longer any non-causal

association between) and.. The non-causal association is now “blocked”

at - by conditioning on -. We illustrate this blocking in Figure 2.4 by

shading - to indicate it is conditioned on and by showing the red dashed

arc being blocked there.

Conditional exchangeability is the main assumption necessary for causal

inference. Armed with this assumption, we can identify the causal effect

within levels of- , just likewe didwith (unconditional) exchangeability:

E[.(1) − .(0) | -] = E[.(1) | -] − E[.(0) | -] (2.5)

= E[.(1) | ) = 1, -] − E[.(0) | ) = 0, -] (2.6)

= E[. | ) = 1, -] − E[. | ) = 0, -] (2.7)

In parallel to before, we get Equation 2.5 by linearity of expectation.

And we now get Equation 2.6 by conditional exchangeability. If we want

the marginal effect that we had before when assuming (unconditional)

exchangeability, we can get that by simply marginalizing out -:

E[.(1) − .(0)] = E-E[.(1) − .(0) | -] (2.8)

= E- [E[. | ) = 1, -] − E[. | ) = 0, -]] (2.9)

This marks an important result for causal inference, so we’ll give it its

own proposition box. The proof we give above leaves out some details.

Read through to Section 2.3.6 (where we redo the proof with all details

specified) to get the rest of the details.Wewill call this result the adjustment
formula.

Theorem 2.1 (Adjustment Formula) Given the assumptions of uncon-
foundedness, positivity, consistency, and no interference, we can identify the
average treatment effect:

E[.(1) − .(0)] = E- [E[. | ) = 1, -] − E[. | ) = 0, -]]

Conditional exchangeability (Assumption 2.2) is a core assumption for

causal inference and goes by many names. For example, the following

are reasonably commonly used to refer to the same assumption: un-

confoundedness, conditional ignorability, no unobserved confounding,

selection on observables, no omitted variable bias, etc. We will use the

name “unconfoundedness” a fair amount throughout this book.

The main reason for moving from exchangeability (Assumption 2.1) to

conditional exchangeability (Assumption 2.2) was that it seemed like a

more realistic assumption. However, we often cannot know for certain

if conditional exchangeability holds. There may be some unobserved

confounders that are not part of - , meaning conditional exchangeability

is violated. Fortunately, that is not a problem in randomized experiments
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8
As we will see in Chapters 3 and 4, it is

not necessarily true that conditioning on

more covariates always helps our causal

estimates be less biased.

(Chapter 5). Unfortunately, it is something that we must always be

conscious of in observational data. Intuitively, the best thing we can do is

to observe and fit as many covariates into - as possible to try to ensure

unconfoundedness.
8

2.3.4 Positivity/Overlap and Extrapolation

While conditioning on many covariates is attractive for achieving uncon-

foundedness, it can actually be detrimental for another reason that has

to do with another important assumption that we have yet to discuss:

positivity. We will get to why at the end of this section. Positivity is the

condition that all subgroups of the data with different covariates have

some probability of receiving any value of treatment. Formally, we define

positivity for binary treatment as follows.

Assumption 2.3 (Positivity / Overlap / Common Support) For all
values of covariates G present in the population of interest (i.e. G such that
%(- = G) > 0),

0 < %() = 1 | - = G) < 1

To seewhypositivity is important, let’s take a closer look at Equation 2.9:

E[.(1) − .(0)] = E- [E[. | ) = 1, -] − E[. | ) = 0, -]]
(2.9 revisited)

In short, if we have a positivity violation, then we will be conditioning

on a zero probability event. This is because there will be some value

of G with non-zero probability for which %() = 1 | - = G) = 0 or

%() = 0 | - = G) = 0. This means that for some value of G that we

are marginalizing out in the above equation, %() = 1, - = G) = 0 or

%() = 0, - = G) = 0, and these are the two events that we condition on

in Equation 2.9.

To clearly see how a positivity violation translates to division by zero,

let’s rewrite the right-hand side of Equation 2.9. For discrete covariates

and outcome, it can be rewritten as follows:∑
G

%(- = G)
(∑
H

H %(. = H | ) = 1, - = G) −
∑
H

H %(. = H | ) = 0, - = G)
)

(2.10)

Then, applying Bayes’ rule, this can be further rewritten:

∑
G

%(- = G)
(∑
H

H
%(. = H, ) = 1, - = G)
%() = 1 | - = G)%(- = G) −

∑
H

H
%(. = H, ) = 0, - = G)
%() = 0 | - = G)%(- = G)

)
(2.11)

In Equation 2.11, we can clearly see why positivity is essential. If

%() = 1 | - = G) = 0 for any level of covariates G with non-zero prob-

ability, then there is division by zero in the first term in the equation,

so E-E[. | ) = 1, -] is undefined. Similarly, if %() = 1 | - = G) = 1

for any level of G, then %() = 0 | - = G) = 0, so there is division by

zero in the second term and E-E[. | ) = 0, -] is undefined. With

either of these violations of the positivity assumption, the causal effect is

undefined.
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[6]: D’Amour et al. (2017), Overlap in Ob-
servational Studies with High-Dimensional
Covariates

12
An “estimator” is a function that takes

a dataset as input and outputs an esti-

mate. We discuss this statistics terminol-

ogy more in Section 2.4.

Intuition That’s the math for why we need the positivity assumption,

but what’s the intuition? Well, if we have a positivity violation, that

means that within some subgroup of the data, everyone always receives

treatment or everyone always receives the control. It wouldn’t make

sense to be able to estimate a causal effect of treatment vs. control in that

subgroup since we see only treatment or only control. We never see the

alternative in that subgroup.

Another name for positivity is overlap. The intuition for this name is that

we want the covariate distribution of the treatment group to overlap

with the covariate distribution of the control group. More specifically,

we want %(- | ) = 1)9

9
Whenever we use a random variable (de-

noted by a capital letter) as the argument

for %, we are referring to the whole dis-

tribution, rather than just the scalar that

something like %(G | ) = 1) refers to.
to have the same support as %(- | ) = 0).10

10
Active reading exercise: convince your-

self that this formulation of overlap/posi-

tivity is equivalent to the formulation in

Assumption 2.3.

This

is why another common alias for positivity is common support.

The Positivity-Unconfoundedness Tradeoff Although conditioning

on more covariates could lead to a higher chance of satisfying uncon-

foundedness, it can lead to a higher chance of violating positivity. As we

increase the dimension of the covariates, we make the subgroups for any

level G of the covariates smaller.
11

11
This is related to the curse of dimensional-

ity.

As each subgroup gets smaller, there

is a higher and higher chance that either the whole subgroup will have

treatment or the whole subgroup will have control. For example, once

the size of any subgroup has decreased to one, positivity is guaranteed to

not hold. See [6] for a rigorous argument of high-dimensional covariates

leading to positivity violations.

Extrapolation Violations of the positivity assumption can actually lead

to demanding too much from models and getting very bad behavior in

return. Many causal effect estimators
12
fit a model to E[. |C , G] using the

(C , G, H) tuples as data. The inputs to these models are (C , G) pairs and the

outputs are the corresponding outcomes. These models will be forced

to extrapolate in regions (using their parametric assumptions) where

%() = 1, - = G) = 0 and regions where %() = 0, - = G) = 0 when

they are used in the adjustment formula (Theorem 2.1) in place of the

corresponding conditional expectations.

2.3.5 No interference, Consistency, and SUTVA

There are a few additional assumptionswe’ve been smuggling in through-

out this chapter. We will specify all the rest of these assumptions in this

section. The first assumption in this section is that of no interference.
No interference means that my outcome is unaffected by anyone else’s

treatment. Rather, my outcome is only a function of my own treatment.

We’ve been using this assumption implicitly throughout this chapter.

We’ll now formalize it.

Assumption 2.4 (No Interference)

.8(C1 , . . . , C8−1 , C8 , C8+1 , . . . , C=) = .8(C8)

Of course, this assumption could be violated. For example, if the treatment

is “get a dog” and the outcome is my happiness, it could easily be that my

happiness is influenced by whether or not my friends get dogs because

we could end up hanging outmore to have our dogs play together. As you
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[7]: Hernán and Robins (2020), Causal In-
ference: What If

13
Active reading exercise: convince your-

self that SUTVA is a combination of con-

sistency and no inference

might expect, violations of the no interference assumption are rampant

in network data.

The last assumption is consistency. Consistency is the assumption that

the outcome we observe . is actually the potential outcome under the

observed treatment ).

Assumption 2.5 (Consistency) If the treatment is ), then the observed
outcome . is the potential outcome under treatment ). Formally,

) = C =⇒ . = .(C) (2.12)

We could write this equivalently as follow:

. = .()) (2.13)

Note that ) is different from C, and .()) is different from .(C). ) is a

random variable that corresponds to the observed treatment, whereas C

is a specific value of treatment. Similarly,.(C) is the potential outcome for

some specific value of treatment, whereas .()) is the potential outcome

for the actual value of treatment that we observe.

When we were using exchangeability to prove identifiability, we actually

assumed consistency in Equation 2.4 to get the follow equality:

E[.(1) | ) = 1] − E[.(0) | ) = 0] = E[. | ) = 1] − E[. | ) = 0]

Similarly, when we were using conditional exchangeability to prove

identifiability, we assumed consistency in Equation 2.7.

It might seem like consistency is obviously true, but that is not always the

case. For example, if the treatment specification is simply “get a dog” or

“don’t get a dog,” this can be too coarse to yield consistency. It might be

that if I were to get a puppy, I would observe . = 1 (happiness) because

I needed an energetic friend, but if I were to get an old, low-energy dog, I

would observe . = 0 (unhappiness). However, both of these treatments

fall under the category of “get a dog,” so both correspond to ) = 1. This

means that .(1) is not well defined, since it will be 1 or 0, depending

on something that is not captured by the treatment specification. In

this sense, consistency encompasses the assumption that is sometimes

referred to as “no multiple versions of treatment.” See Sections 3.4 and

3.5 of Hernán and Robins [7] and references therein for more discussion

on this topic.

SUTVA You will also commonly see the stable unit-treatment value
assumption (SUTVA) in the literature. SUTVA is satisfied if unit (individual)

8’s outcome is simply a function of unit 8’s treatment. Therefore, SUTVA is

a combination of consistency and no interference (and also deterministic

potential outcomes).
13

2.3.6 Tying It All Together

We introduced unconfoundedness (conditional exchangeability) first

because it is the main causal assumption. However, all of the assumptions

are necessary:
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1. Unconfoundedness (Assumption 2.2)

2. Positivity (Assumption 2.3)

3. No interference (Assumption 2.4)

4. Consistency (Assumption 2.5)

We’ll now review the proof of the adjustment formula (Theorem 2.1)

that was done in Equation 2.5 through Equation 2.9 and list which

assumptions are used for each step. Even before we get to these equations,

we use the no interference assumption to justify that the quantity we

should be looking at for causal inference is E[.(1) − .(0)], rather than
something more complex like the left-hand side of Assumption 2.4. In

the proof below, the first two equalities follow from mathematical facts,

whereas the last two follow from these key assumptions.

Proof of Theorem 2.1.

E[.(1) − .(0)] = E[.(1)] − E[.(0)] (linearity of expectation)

= E- [E[.(1) | -] − E[.(0) | -]]
(law of iterated expectations)

= E- [E[.(1) | ) = 1, -] − E[.(0) | ) = 0, -]]
(unconfoundedness and positivity)

= E- [E[. | ) = 1, -] − E[. | ) = 0, -]]
(consistency)

That’s how all of these assumptions tie together to give us identifiability

of the ATE.We’ll soon see how to use this result to get an actual estimated

number for the ATE.

2.4 Fancy Statistics Terminology Defancified

Before we start computing concrete numbers for the ATE, we must

quickly introduce some terminology from statistics that will help clarify

the discussion. An estimand is the quantity that we want to estimate. For

example,E- [E[. | ) = 1, -] − E[. | ) = 0, -]] is the estimandwe care

about for estimating the ATE. An estimate (noun) is an approximation of

some estimand, which we get using data. We will see concrete numbers

in the next section; these are estimates. Given some estimand , we write

an estimate of that estimand by simply putting a hat on it: ̂. And an

estimator is a function that maps a dataset to an estimate of the estimand.

The process that we will use to go from data + estimand to a concrete

number is known as estimation. To estimate (verb) is to feed data into an

estimator to get an estimate.

In this book, we will use even more specific language that allows us to

make the distinction between causal quantities and statistical quantities.

We will use the phrase causal estimand to refer to any estimand that

contains a potential outcome or do-operator in it. We will use the phrase

statistical estimand to denote the complement: any estimand that does not
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14
Active reading exercise:Why can’t we di-

rectly estimate a causal estimand without

first translating it to a statistical estimand?

[8]: Luque-Fernandez et al. (2018), ‘Edu-

cational Note: Paradoxical collider effect

in the analysis of non-communicable dis-

ease epidemiological data: a reproducible

illustration and web application’

[9]: Virani et al. (2020), ‘Heart Disease and

Stroke Statistics—2020 Update: A Report

From the American Heart Association’
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Aswewill see, this binarization is purely

pedagogical and does not reflect any limi-

tations of adjusting for confounders.

contain a potential outcome or do-operator in it. For an example, recall

the adjustment formula (Theorem 2.1):

E[.(1) − .(0)] = E- [E[. | ) = 1, -] − E[. | ) = 0, -]] (2.14)

E[.(1) − .(0)] is the causal estimand that we are interested in. In order

to actually estimate this causal estimand, we must translate it into a

statistical estimand: E- [E[. | ) = 1, -] − E[. | ) = 0, -]].14

When we say “identification” in this book, we are referring to the process

of moving from a causal estimand to an equivalent statistical estimand.

Whenwe say “estimation,” we are referring to the process ofmoving from

a statistical estimand to an estimate. We illustrate this in the flowchart in

Figure 2.5.

Causal Estimand Statistical Estimand Estimate

Identification Estimation

Figure 2.5: The Identification-Estimation Flowchart – a flowchart that illustrates the process of moving from a target causal estimand to a

corresponding estimate, through identification and estimation.

What do we do when we go to actually estimate quantities such as

E- [E[. | ) = 1, -] − E[. | ) = 0, -]]? We will often use a model (e.g.

linear regression or some more fancy predictor from machine learning)

in place of the conditional expectations E[. | ) = C , - = G]. We will

refer to estimators that use models like this as model-assisted estimators.
Now that we’ve gotten some of this terminology out of the way, we can

proceed to an example of estimating the ATE.

2.5 A Complete Example with Estimation

Theorem 2.1 and the corresponding recent copy in Equation 2.14 give

us identification. However, we haven’t discussed estimation at all. In

this section, we will give a short example complete with estimation. We

will cover the topic of estimation of causal effects more completely in

Chapter 7.

We use Luque-Fernandez et al. [8]’s example from epidemiology. The

outcome . of interest is (systolic) blood pressure. This is an important

outcome because roughly 46% of Americans have high blood pressure,

and high blood pressure is associated with increased risk of mortality

[9]. The “treatment” ) of interest is sodium intake. Sodium intake is

a continuous variable; in order to easily apply Equation 2.14, which is

specified for binary treatment, we will binarize ) by letting ) = 1 denote

daily sodium intake above 3.5 grams and letting ) = 0 denote daily

sodium intake below 3.5 grams.
15
We will be estimating the causal effect

of sodium intake on blood pressure. In our data, we also have the age

of the individuals and amount of protein in their urine as covariates -.

Luque-Fernandez et al. [8] run a simulation, taking care to be sure that

the range of values is “biologically plausible and as close to reality as

possible.”

Because we are using data from a simulation, we know that the true ATE

of sodium on blood pressure is 1.05. More concretely, the line of code

that generates blood pressure . looks as follows:
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[10]: Hastie et al. (2001), The Elements of
Statistical Learning
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Active reading exercise: This

naive version is equivalent to just

taking the associational difference:

E[. | ) = 1] − E[. | ) = 0]. Why?

1 blood_pressure = 1.05 * sodium + ...

Now, how do we actually estimate the ATE? First, we assume consistency,

positivity, and unconfoundedness given -. As we recently recalled in

Equation 2.14, this means that we’ve identified the ATE as

E- [E[. | ) = 1, -] − E[. | ) = 0, -]] .

We then take that outer expectation over - and replace it with an

empirical mean over the data, giving us the following:

1

=

∑
8

[E[. | ) = 1, - = G8] − E[. | ) = 0, - = G8]] (2.15)

To complete our estimator, we then fit some machine learning model to

the conditional expectation E[. | C , G]. Minimizing the mean-squared

error (MSE) of predicting . from (), -) pairs is equivalent to modeling

this conditional expectation [see, e.g., 10, Section 2.4]. Therefore, we can

plug in any machine learning model for E[. | C , G], which gives us a

model-assisted estimator. We’ll use linear regression here, which works

out nicely since blood pressure is generated as a linear combination of

other variables, in this simulation. We give Python code for this below,

where our data are in a Pandas DataFrame called df. We fit the model

for E[. | C , G] in line 8, and we take the empirical mean over - in lines

10-14.

Listing 2.1: Python code for estimating

the ATE

1 import numpy as np

2 import pandas as pd

3 from sklearn.linear_model import LinearRegression

4

5 Xt = df[['sodium', 'age', 'proteinuria']]

6 y = df['blood_pressure']

7 model = LinearRegression()

8 model.fit(Xt, y)

9

10 Xt1 = pd.DataFrame.copy(Xt)

11 Xt1['sodium'] = 1

12 Xt0 = pd.DataFrame.copy(Xt)

13 Xt0['sodium'] = 0

14 ate_est = np.mean(model.predict(Xt1) - model.predict(Xt0))

15 print('ATE estimate:', ate_est)

Full code, complete with simulation,

is available at https://github.com/

bradyneal/causal-book-code/blob/

master/sodium_example.py.

This yields an ATE estimate of 0.85. If we were to naively regress .

on only ), which corresponds to replacing line 5 in Listing 2.1 with

Xt = df[['sodium']],16 we would get an ATE estimate of 5.33. That’s a

|5.33−1.05|
1.05

× 100% = 407% error! In contrast, when we control for - (as in

Listing 2.1), our percent error is only
|.85−1.05|

1.05
× 100% = 19%.

All of the above is done using the adjustment formulawithmodel-assisted

estimation, where we first fit a model for the conditional expectation

E[. | C , G], and then we take an empirical mean over - , using that model.

However, because we are using a linear model, this is equivalent to just

taking the coefficient in front of ) in the linear regression as the ATE

estimate. This is what we do in the following code (which gives the exact

same ATE estimate):

Listing 2.2: Python code for estimating

the ATE using the coefficient of linear re-

gression

1 Xt = df[['sodium', 'age', 'proteinuria']]

https://github.com/bradyneal/causal-book-code/blob/master/sodium_example.py
https://github.com/bradyneal/causal-book-code/blob/master/sodium_example.py
https://github.com/bradyneal/causal-book-code/blob/master/sodium_example.py
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17
By “misspecified,” we mean that the

functional form of the model does not

match the functional form of the data gen-

erating process.

[11]: Morgan and Winship (2014), Counter-
factuals and Causal Inference: Methods and
Principles for Social Research

2 y = df['blood_pressure']

3 model = LinearRegression()

4 model.fit(Xt, y)

5 ate_est = model.coef_[0]

6 print('ATE estimate:', ate_est)

Continuous Treatment What if we allow the treatment, daily sodium

intake, to remain continuous, instead of binarizing it? The cool thing

about just taking the regression coefficient as the ATE estimate is that it

doesn’t require taking a difference between two values of treatment (e.g.

) = 1 and ) = 0), so it trivially generalizes to when ) is continuous. In

other words, we have compressed all of E[. | C], which is a function of C,

into a single value.

However, this effortless compression of all of E[. | C] for continuous C
comes as a cost: the linear parametric form we assumed. If this model

were misspecified,
17
our ATE estimate would be biased. And because

linear models are so simple, they will likely be misspecified. For example,

the following assumption is implicit in assuming that a linear model is

well-specified: the treatment effect is the same for all individuals. See

Morgan andWinship [11, Sections 6.2 and 6.3] for amore complete critique

of using the coefficient in front of treatment as the ATE estimate.
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We’ve been using causal graphs in the previous chapters to aid intuition.

In this chapter, we will introduce the formalisms that underlie this

intuition. Hopefully, we have sufficiently motivated this chapter and

made the utility of graphical models clear with all of the graphical

interpretations of concepts in previous chapters.

3.1 Graph Terminology

In this section, we will use the terminology machine gun (see Figure 3.1). To

be able to use nice convenient graph language in the following sections,

rapid-firing a lot of graph terminology is a necessary evil, unfortunately.

term

term
term

term

term

term

term

term

Figure 3.1: Terminology machine gun

The term “graph” is often used to describe a variety of visualizations.

For example, “graph” might refer to a visualization of a single variable

function 5 (G), where G is plotted on the G-axis and 5 (G) is plotted

on the H-axis. Or “bar graph” might be used as a synonym for a bar

chart. However, in graph theory, the term “graph” refers to a specific

mathematical object.

A graph is a collection of nodes (also called “vertices”) and edges that
connect the nodes. For example, in Figure 3.2, �, �, and � are the nodes

of the graph, and the lines connecting them are the edges. Figure 3.2 is

called an undirected graph because the edges do not have any direction. In

contrast, Figure 3.3 is a directed graph. A directed graph’s edges go out

of a parent node and into a child node, with the arrows signifying which

direction the edges are going. We will denote the parents of a node -

with pa(-). We’ll use an even simpler shorthand when the nodes are

ordered so that we can denote the 8th node by -8 ; in that case, we will

also denote the parents of -8 by pa8 . Two nodes are said to be adjacent
if they are connected by an edge. For example, in both Figure 3.2 and

Figure 3.3, � and � are adjacent, but � and � are not.

� �

� �

Figure 3.2: Undirected graph

A path in a graph is any sequence of adjacent nodes, regardless of the

direction of the edges that join them. For example, �— � — � is a path

in Figure 3.2, and �→ � ← � is a path in Figure 3.3. A directed path is
a path that consists of directed edges that are all directed in the same

direction (no two edges along the path both point into or both point

out of the same node). For example, �→ � → � is a directed path in

Figure 3.3, but �→ � ← � and � ← �→ � are not.

If there is a directed path that starts at node - and ends at node., then -

is an ancestor of., and. is a descendant of - . We will denote descendants

of - by de(-). For example, in Figure 3.3, � is an ancestor of � and

�, and � and � are both descendants of � (de(�)). If - is an ancestor

of itself, then some funky time travel has taken place. In seriousness, a

directed path from some node - back to itself is known as a cycle. If there
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are no cycles in a directed graph, the graph is known as a directed acyclic
graph (DAG). The graphs we focus on in this book will mostly be DAGs.

If twoparents- and. share some child/, but there is no edge connecting

- and ., then - → /← . is known as an immorality. Seriously; that’s a
real term in graphical models. For example, if the �→ � edge did not

exist in Figure 3.3, then �→ � ← � would be an immorality.

3.2 Bayesian Networks

It turns out that much of the work for causal graphical models was done

in the field of probabilistic graphical models. Probabilistic graphical

models are statistical models while causal graphical models are causal

models. Bayesian networks are the main probabilistic graphical model

that causal graphical models (causal Bayesian networks) inherit most of

their properties from.

Imagine that we only cared about modeling association, without any

causalmodeling.Wewouldwant tomodel thedatadistribution%(G1 , G2 , . . . , G=).
In general, we can use the chain rule of probability to factorize any distri-

bution:

%(G1 , G2 , . . . , G=) = %(G1)
∏
8

%(G8 | G8−1 , . . . , G1) (3.1)

However, if we were to model these factors with tables, it would take an

exponential number of parameters. To see this, take each G8 to be binary

and consider how we would model the factor %(G= | G=−1 , . . . , G1). Since
G= is binary, we only need to model %(-= = 1 | G=−1 , . . . , G1) because
%(-= = 0 | G=−1 , . . . , G1) is simply 1− %(-= = 1 | G=−1 , . . . , G1). Well, we

would need 2
=−1

parameters to model this. As a specific example, let

= = 4. As we can see in Table 3.1, this would require 2
4−1 = 8 parameters:

1 , . . . , 8. This brute-force parametrization quickly becomes intractable

as = increases.

Table 3.1: Table required to model the

single factor %(G= | G=−1 , . . . , G1) where

= = 4 and the variables are binary. The

number of parameters to necessary is ex-

ponential in =.

G1 G2 G3 %(G4 |G3 , G2 , G1)
0 0 0 1

0 0 1 2

0 1 0 3

0 1 1 4

1 0 0 5

1 0 1 6

1 1 0 7

1 1 1 8

An intuitive way to more efficiently model many variables together in

a joint distribution is to only model local dependencies. For example,

rather than modeling the -4 factor as %(G4 |G3 , G2 , G1), we could model

it as %(G4 |G3) if we have reason to believe that -4 only locally depends

on -3. In fact, in the corresponding graph in Figure 3.4, the only node

that feeds into -4 is -3. This is meant to signify that -4 only locally

depends on -3. Whenever we use a graph � in relation to a probability

distribution %, there will always be a one-to-one mapping between the

nodes in � and the random variables in %, so when we talk about nodes

being independent, we mean the corresponding random variables are

independent.

-1 -2

-3 -4

Figure 3.4: Four node DAG where -4 lo-

cally depends on only -3.

Given a probability distribution and a corresponding directed acyclic

graph (DAG), we can formalize the specification of independencies with

the local Markov assumption:

Assumption 3.1 (Local Markov Assumption) Given its parents in the
DAG, a node - is independent of all of its non-descendants.
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1
A probability distribution is said to be

(locally) Markov with respect to a DAG if

they satisfy the local Markov assumption.

[12]: Koller and Friedman (2009), Proba-
bilistic Graphical Models: Principles and Tech-
niques

This assumption (along with specific DAGs) gives us a lot. We will

demonstrate this in the next few equations. In our four variable example,

the chain rule of probability tells us that we can factorize any % such that

%(G1 , G2 , G3 , G4) = %(G1)%(G2 |G1)%(G3 |G2 , G1)%(G4 |G3 , G2 , G1) . (3.2)

If % is Markov with respect to the graph
1
in Figure 3.4, then we can

simply the last factor:

%(G1 , G2 , G3 , G4) = %(G1)%(G2 |G1)%(G3 |G2 , G1)%(G4 |G3) . (3.3)

If we further remove edges, removing -1 → -2 and -2 → -3 as in

Figure 3.5, we can further simplify the factorization of %:

%(G1 , G2 , G3 , G4) = %(G1)%(G2)%(G3 |G1)%(G4 |G3) . (3.4)

-1 -2

-3 -4

Figure 3.5: Four node DAG with even

more independencies.

With the understanding that we have hopefully built up from a few

examples,
2

2
Active reading exercise:: ensure that you

know how we get from Equation 3.2 to

Equation 3.3 and to Equation 3.4 using the

local Markov assumption.

we will now state one of the main consequences of the local

Markov assumption:

Definition 3.1 (Bayesian Network Factorization) Given a probability
distribution % and a DAG �, % factorizes according to � if

%(G1 , . . . , G=) =
∏
8

%(G8 | pa8)

Hopefully you see the resemblance between the move from Equation 3.2

to Equation 3.3 or the move to Equation 3.4 and the generalization of this

that is presented in Definition 3.1.

The Bayesian network factorization is also known as the chain rule for
Bayesian networks or Markov compatibility. For example, if % factorizes

according to �, then % and � are Markov compatible.

We have given the intuition of how the local Markov assumption implies

the Bayesian network factorization, and it turns out that the two are

actually equivalent. In other words, we could have started with the

Bayesian network factorization as the main assumption (and labeled it as

an assumption) and shown that it implies the local Markov assumption.

See Koller and Friedman [12, Chapter 3] for these proofs and more

information on this topic.

As important as the local Markov assumption is, it only gives us infor-

mation about the independencies in % that a DAG implies. It does not

even tell us that if - and . are adjacent in the DAG, then - and . are

dependent. And this additional information is very commonly assumed

in causal DAGs. To get this guaranteed dependence between adjacent

nodes, we will generally assume a slightly stronger assumption than the

local Markov assumption: minimality.

Assumption 3.2 (Minimality Assumption) 1. Given its parents in
the DAG, a node - is independent of all of its non-descendants
(Assumption 3.1).

2. Adjacent nodes in the DAG are dependent.3

3
This is often equivalently stated in the

following way: if we were to remove any

edges from the DAG, % would not be

Markov with respect to the graph with

the removed edges [see, e.g., 13, Section

6.5.3]

[13]: Peters et al. (2017), Elements of Causal
Inference: Foundations and Learning Algo-
rithms

.
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4
Active reading exercise: why is removing

edges in a Bayesian network equivalent to

adding independencies?

To see why this assumption is named “minimality” consider, what we

knowwhenwe know that % is Markovwith respect to a DAG�. We know

that % satisfies a set of independencies that are specific to the structure of

�. If % and � also satisfy minimality, then this set of independencies is

minimal in the sense the % does not satisfy any additional independencies.

This is equivalent to saying that adjacent nodes are dependent.

For example, if the DAG were simply two connected nodes - and . as

in Figure 3.6, the local Markov assumption would tell us that we can

factorize %(G, H) as %(G)%(H |G), but it would also allow us to factorize

%(G, H) as %(G)%(H), meaning it allows distributions where - and . are

independent. In contrast, the minimality assumption does not allow this

additional independence. Minimality would tell us to factorize %(G, H)
as %(G)%(H |G), and it would tell us that no additional independencies

(- ⊥⊥ .) exist in % that are minimal with respect to Figure 3.6.

- .

Figure 3.6: Two connected nodes

Because removing edges in a Bayesian network is equivalent to adding

independencies,
4
the minimality assumption is equivalent to saying that

we can’t remove any more edges from the graph. In a sense, every edge is

“active.” More concretely, consider that % and � are Markov compatible

and that �′ is what we get when we remove some edge from �. If % is

also Markov with respect to �′, then % is not minimal with respect to

�.

Armed with the minimality assumption and what it implies about how

distributions factorize when they are Markov with respect to some DAG

(Definition 3.1), we are now ready to discuss the flow of association in

DAGs. However, because everything in this section is purely statistical,

we are not ready to discuss the flow of causation in DAGs. To do that, we

must make causal assumptions. Pedagogically, this will also allow us to

use intuitive causal language when we explain the flow of association.

3.3 Causal Graphs

The previous section was all about statistical models and modeling

association. In this section, we will augment these models with causal

assumptions, turning them into causal models and allowing us to study

causation. In order to introduce causal assumptions, we must first have

an understanding of what it means for - to be a cause of ..

Definition 3.2 (What is a cause?) A variable - is said to be a cause of a
variable . if . can change in response to changes in -.5 5

See Section 4.5.1 for a definition using

mathematical notation.

Another phrase commonly used to describe this primitive is that .

“listens” to - . With this, we can now specify the main causal assumption

that we will use throughout this book.

Assumption 3.3 ((Strict) Causal Edges Assumption) In a directed graph,
every parent is a direct cause of all of their children.

Here, the set of direct causes of . is everything that . directly responds

to; if we fix all of the direct causes of ., then changing any other cause of

. won’t induce any changes in .. This assumption is “strict” in the sense
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that every edge is “active,” just like in DAGs that satisfy minimality. In

other words, because the definition of a cause (Definition 3.2) implies

that a cause and its effect are dependent and because we are assuming

all parents are causes of their children, we are assuming that parents

and their children are dependent. So the second part of minimality

(Assumption 3.2) is baked into the strict causal edges assumption.

In contrast, the non-strict causal edges assumption would allow for

some parents to not be causes of their children. It would just assume

that children are not causes of their parents. This allows us to draw

graphs with extra edges to make fewer assumptions, just like we would

in Bayesian networks, where more edges means fewer independence

assumptions. Causal graphs are sometimes drawn with this kind of

non-minimal meaning, but the vast majority of the time, when someone

draws a causal graph, they mean that parents are causes of their children.

Therefore, unless we specify otherwise, throughout this book, we will

use “causal graph” to refer to a DAG that satisfies the strict causal edges

assumption. And we will often omit the word “strict” when we refer to

this assumption.

When we add the causal edges assumption, directed paths in the DAG

take on a very special meaning; they correspond to causation. This is in

contrast to other paths in the graph, which association may flow along,

but causation certainly may not. This will become more clear when we

go into detail on these other kinds of paths in Sections 3.5 and 3.6.

Moving forward, we will now think of the edges of graphs as causal, in

order to describe concepts intuitively with causal language. However,

all of the associational claims about statistical independence will still

hold, even when the edges do not have causal meaning like in the vanilla

Bayesian networks of Section 3.2.

As we will see in the next few sections, the main assumptions that we

need for our causal graphical models to tell us how association and

causation flow between variables are the following two:

1. Local Markov Assumption (Assumption 3.1)

2. Causal Edges Assumption (Assumption 3.3)

We will discuss these assumptions throughout the next few sections and

come back to discuss them more fully again in Section 3.8 after we’ve

established the necessary preliminaries.

3.4 Two-Node Graphs and Graphical Building
Blocks

Now that we’ve gotten the basic assumptions and definitions out of the

way, we can get to the core of this chapter: the flow of association and

causation in DAGs. We can understand this flow in general DAGs by

understanding the flow in the minimal building blocks of graphs. These

minimal building blocks consist of chains (Figure 3.7a), forks (Figure 3.7b),

immoralities (Figure 3.7c), two unconnected nodes (Figure 3.8), and two

connected nodes (Figure 3.9).
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-1 -2 -3

(a) Chain

-2

-1 -3

(b) Fork

-1

-2

-3

(c) Immorality

Figure 3.7: Basic graph building blocks

-1 -2

Figure 3.9: Two connected nodes

6
Two adjacent nodes in a non-strict causal

graph can be unassociated.

-1 -2 -3

Figure 3.10:Chainwithflowof association

drawn as a dashed red arc.

By “flow of association,” we mean whether any two nodes in a graph are

associated or not associated. Another way of saying this is whether two

nodes are (statistically) dependent or (statistically) independent. Addi-

tionally, we will study whether two nodes are conditionally independent

or not.

For each building block, we will give the intuition for why two nodes

are (conditionally) independent or not, and we will give a proof as well.

We can prove that two nodes � and � are conditionally independent

given some set of nodes � by simply showing that %(0, 1 |2) factorizes
as %(0 |2)%(1 |2). We will now do this in the case of the simplest basic

building block: two unconnected nodes.

Given agraph that is just twounconnectednodes, as depicted in Figure 3.8,

these nodes are not associated simply because there is no edge between

them. To show this, consider the factorization of %(G1 , G2) that the

Bayesian network factorization (Definition 3.1) gives us:

%(G1 , G2) = %(G1)%(G2) (3.5)

That’s it; applying the Bayesian network factorization immediately gives

us a proof that the two nodes -1 and -2 are unassociated (independent)

in this building block. And what is the assumption that allows us to

prove this? That % is Markov with respect to the graph in Figure 3.8.

-1 -2

Figure 3.8: Two unconnected nodes

In contrast, if there is an edge between the two nodes (as in Figure 3.9),

then the two nodes are associated. The assumption we leverage here is

the causal edges assumption (Assumption 3.3), which means that -1

is a cause of -2. Since -1 is a cause of -2, -2 must be able to change

in response to changes in -1, so -2 and -1 are associated. In general,

any time two nodes are adjacent in a causal graph, they are associated.
6

We will see this same concept several more times in Section 3.5 and

Section 3.6.

Now that we’ve covered the relevant two-node graphs, we’ll cover the

flowof association in the remaining graphical building blocks (three-node

graphs in Figure 3.7), starting with chain graphs.

3.5 Chains and Forks

Chains (Figure 3.10) and forks (Figure 3.11) share the same set of depen-

dencies. In both structures, -1 and -2 are dependent, and -2 and -3

are dependent for the same reason that we discussed toward the end

of Section 3.4. Adjacent nodes are always dependent when we make

the causal edges assumption (Assumption 3.3). What about -1 and -3,
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-2

-1 -3

Figure 3.11: Fork with flow of association

drawn as a dashed red arc.

[14]: Pearl et al. (2016), Causal inference in
statistics: A primer

-2-1 -3

Figure 3.12: Chain with association

blocked by conditioning on -2.

-2

-1 -3

Figure 3.13: Fork with association blocked

by conditioning on -2.

though? Does association flow from -1 to -3 through -2 in chains and

forks?

Usually, yes, -1 and -3 are associated in both chains and forks. In chain

graphs, -1 and -3 are usually dependent simply because -1 causes

changes in -2 which then causes changes in -3. In a fork graph, -1 and

-3 are also usually dependent. This is because the same value that -2

takes on is used to determine both the value that -1 takes on and the

value that -3 takes on. In other words, -1 and -3 are associated through

their (shared) common cause. We use the word “usually” throughout this

paragraph because there exist pathological cases where the conditional

distributions %(G2 |G1) and %(G3 |G2) are misaligned in such a specific way

that makes -1 and -3 not actually associated [see, e.g., 14, Section 2.2].

An intuitive graphical way of thinking about -1 and -3 being associated

in chains and forks is to visualize the flow of association. We visualize

this with a dashed red line in Figure 3.10 and Figure 3.11. In the chain

graph (Figure 3.10), association flows from -1 to -3 along the path -1 →
-2 → -3. Symmetrically, association flows from-3 to-1 along that same

path, just running opposite the arrows. In the fork graph (Figure 3.11),

association flows from -1 to -3 along the path -1 ← -2 → -3. And

similarly, we can think of association flowing from -3 to -1 along that

same path, just as was the case with chains. In general, the flow of

association is symmetric.

Chains and forks also share the same set of independencies. When we

condition on -2 in both graphs, it blocks the flow of association from -1

to -3. This is because of the local Markov assumption; each variable only

locally depends on its parents. So when we condition on -2 (-3’s parent

in both graphs), -3 becomes independent of -1 (and vice versa).

We will refer to this independence as an instance of a blocked path. We

illustrate these blocked paths in Figure 3.12 and Figure 3.13. Conditioning

blocks the flow of association in chains and forks. Without conditioning,

association is free to flow in chains and forks; we will refer to this as

an unblocked path. However, the situation is completely different with

immoralities, as we will see in the next section.

That’s all nice intuition, but what about the proof? We can prove that

-1 ⊥⊥ -3 | -2 using just the local Markov assumption. We will do this by

showing that %(G1 , G3 | G2) = %(G1 | G2)%(G3 | G2). We’ll show the proof

for chain graphs. It is usually useful to start with the Bayesian network

factorization. For chains, we can factorize %(G1 , G2 , G3) as follows:

%(G1 , G2 , G3) = %(G1)%(G2 |G1)%(G3 |G2) (3.6)

Bayes’ rule tells us that %(G1 , G3 | G2) = %(G1 ,G2 ,G3)
%(G2) , so we have

%(G1 , G3 | G2) =
%(G1)%(G2 |G1)%(G3 |G2)

%(G2)
(3.7)

Since we’re looking to end up with %(G1 | G2)%(G3 | G2) and we already

have %(G3 |G2), we must turn the rest into %(G1 | G2). We can do this by
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7
Active reading exercise: prove that

-1 ⊥⊥ -3 | -2 for forks (Figure 3.13).

-2

-1
-3

Figure 3.14: Immorality with association

blocked by a collider.

-2

-1
-3

Figure 3.15: Immorality with association

unblocked by conditioning on the collider.

another application of Bayes rule:

%(G1 , G3 | G2) =
%(G1 , G2)
%(G2)

%(G3 |G2) (3.8)

= %(G1 |G2)%(G3 |G2) (3.9)

With that, we’ve shown that -1 ⊥⊥ -3 | -2. Try it yourself; prove the

analog in forks.
7

Flow of Causation The flow of association is symmetric, whereas the

flow of causation is not. Under the causal edges assumption (Assump-

tion 3.3), causation only flows in a single direction. Causation only flows

along directed paths. Association flows along any path that does not

contain an immorality.

3.6 Colliders and their Descendants

Recall from Section 3.1 that we have an immorality when we have a child

whose two parents do not have an edge connecting them (Figure 3.14).

And in this graph structure, the child is known as a bastard. No, just

kidding; it’s called a collider.

In contrast to chains and forks, in an immorality, -1 ⊥⊥ -3. Look at

the graph structure and think about it a bit. Why would -1 and -3 be

associated? One isn’t the descendent of the other like in chains, and

they don’t share a common cause like in forks. Rather, we can think of

-1 and -3 simply as unrelated events that happen, which happen to

both contribute to some common effect (-2). To show this, we apply the

Bayesian network factorization and marginalize out G2:

%(G1 , G3) =
∑
G2

%(G1 , G2 , G3) (3.10)

=
∑
G2

%(G1)%(G3)%(G2 | G1 , G3) (3.11)

= %(G1)%(G3)
∑
G2

%(G2 | G1 , G3) (3.12)

= %(G1)%(G3) (3.13)

We illustrate the independence of -1 and -3 in Figure 3.14 by showing

that the association that we could have imagined as flowing along the

path -1 → -2 ← -3 is actually blocked at -2. Because we have a collider

on the path connecting -1 and -3, association does not flow through

that path. This is another example of a blocked path, but this time the path

is not blocked by conditioning; the path is blocked by a collider.

Good Looking Men are Jerks Oddly enough, when we condition on

the collider -2, its parents -1 and -3 become dependent (depicted in

Figure 3.15). An example is the easiest way to see why this is the case.

Imagine that you’re out dating men, and you notice that most of the

nice men you meet are not very good looking, and most of the good

looking men youmeet are jerks. It seems that you have to choose between

looks and kindness. In other words, it seems like kindness and looks are

negatively associated. However, what if I also told you that there is an

important third variable here: availability (whether men are already in
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Active reading exercise: Come up with

your own example of an immortality

and how conditioning on the collider

induces association between its parents.

Hint: think of rare events for -1 and -3

where, if either of them happens, some

outcome -2 will happen.

[7]: Hernán and Robins (2020), Causal In-
ference: What If

a relationship or not)? And what if told you that a man’s availability is

largely determined by their looks and kindness; if they are both good

looking and kind, then they are in a relationship. The available men are

the remaining ones, the ones who are either not good looking or not

kind. You see an association between looks and kindness because you’ve

conditioned on a collider (availability). You’re only looking at men who

are not in a relationship. You can see the causal structure of this example

by taking Figure 3.15 and replacing -1 with “looks,” -3 with “kindness,”

and -2 with “availability.”

The above example naturally suggests that, when dating men, maybe

you should consider not conditioning on -2 = “not in a relationship”

and, instead, condition on -2 = “in a relationship.” However, you could

run into other variables -4 that introduce new immoralities there. Such

complexities are outside the scope of this book.

Returning to inside the scope of this book, we have that conditioning

on a collider can turn a blocked path into an unblocked path. The parents
-1 and -3 are not associated in the general population, but when we

condition on their shared child-2 taking on a specific value, they become

associated. Conditioning on the collider -2 allows associated to flow

along the path -1 → -2 ← -3, despite the fact that it does not when we

don’t condition on -2. We illustrate this in the move from Figure 3.14 to

Figure 3.15.

We can also illustrate this with a scatter plot. In TODO, we plot the

whole population, with kindness on the x-axis and looks on the y-axis.

As you can see, the variables are not associated in the general population.

However, if we remove the ones who are already in a relationship (top

triangle), we are left with a clear negative association. This phenomenon

is known as Berkson’s paradox. The fact that see this negative association
simply because we are selecting a biased subset of the general population

to look at is why this is sometimes referred to as selection bias [see, e.g., 7,
Chapter 8].

Numerical Example All of the above has been to give you intuition

about why conditioning on a collider induces association between its

parents, but we have yet to give a concrete numerical example of this.

We will give a simple one here. Consider the following data generating
process (DGP), where -1 and -3 are drawn independently from standard

normal distributions and then used to compute -2:

-1 ∼ #(0, 1) , -3 ∼ #(0, 1) (3.14)

-2 = -1 + -3 (3.15)

We’ve already stated that -1 and -3 are independent, but to juxtapose

the two calculations, let’s compute their covariance:

Cov(-1 , -3) = E[(-1 − E[-1])(-3 − E[-3])]
= E[-1-3] (zero mean)

= E[-1]E[-3] (independent)

= 0
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Now, let’s compute their covariance, conditional on -2:

Cov(-1 , -3 | -2 = G) = E[-1-3 | -2 = G] (3.16)

= E[-1(G − -1)] (3.17)

= GE[-1] − E[-2

1
] (3.18)

= −1 (3.19)

Crucially, in Equation 3.17, we used Equation 3.15 to plug in for -3 in

terms of -1 and -2 (conditioned to G). This led to a second-order term,

which led to the calculation giving a nonzero number, which means -1

and -3 are associated, conditional on -2.

Descendants of Colliders Conditioning on descendants of a collider

also induces association in between the parents of the collider. The

intuition is that if we learn something about a collider’s descendent, we

usually also learn something about the collider itself because there is

a direct causal path from the collider to its descendants, and we know

that nodes in a chain are usually associated (see Section 3.5), assuming

minimality (Assumption 3.2). In other words, a descendant of a collider

can be thought of as a proxy for that collider, so conditioning on the

descendant is similar to conditioning on the collider itself.

Active reading exercise:We have provided

several techniques for how to think about

colliders: high-level examples, numerical

examples, and abstract reasoning. Use at

least one of them to convince yourself

that conditioning on a descendant of a

collider can induce association between

the collider’s parents.
3.7 d-separation

Before we define d-separation, we’ll codify what we mean by the con-

cept of a “blocked path,” which we’ve been discussing in the previous

sections:

Definition 3.3 (blocked path) A path between nodes - and . is blocked
by a (potentially empty) conditioning set / if either of the following hold:

1. Along the path, there is a chain · · · →, → . . . or a fork
· · · ←, → . . ., where, is conditioned on (, ∈ /).

2. There is a collider, on the path that is not conditioned on (, ∉ /)
and none of its descendants are conditioned on (de(,) * /).

Then, an unblocked path is simply the complement; an unblocked path is a

path that is not blocked. The graphical intuition to have in mind is that

association flows along unblocked paths, and association does not flow

along blocked paths. If you don’t have this intuition in mind, then it is

probably worth it to reread the previous two sections, with the goal of

gaining this intuition. Now, we are ready to introduce a very important

concept: d-separation.

Definition 3.4 (d-separation) Two (sets of) nodes - and . are d-separated
by a set of nodes / if all of the paths between (any node in) - and (any node
in) . are blocked by / [15] [15]: Pearl (1988), Probabilistic Reasoning

in Intelligent Systems: Networks of Plausible
Inference

.

If all the paths between two nodes - and . are blocked, then we say that

- and. are d-separated. Similarly, if there exists at least one path between

- and . that is unblocked, then we say that - and . are d-connected.
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[12]: Koller and Friedman (2009), Proba-
bilistic Graphical Models: Principles and Tech-
niques

As we will see in Theorem 3.1, d-separation is such an important concept

because it implies conditional independence. We will use the notation

- ⊥⊥ �. | / to denote that - and . are d-separated in the graph �

when conditioning on /. Similarly, we will use the notation - ⊥⊥ %. | /
to denote that - and . are independent in the distribution % when

conditioning on /.

Theorem 3.1 Given that % is Markov with respect to � (satisfies the local
Markov assumption, Assumption 3.1), if - and . are d-separated in �
conditioned on /, then - and . are independent in % conditioned on /. We
can write this succinctly as follows:

- ⊥⊥ �. | / =⇒ - ⊥⊥ %. | / (3.20)

Because this is so important, we will give Equation 3.20 a name: the global
Markov assumption. Theorem 3.1 tells us that the local Markov assumption

implies the global Markov assumption.

Markov assumption Just as we built up the intuition that suggested that the

local Markov assumption (Assumption 3.1) implies the Bayesian network

factorization (Definition 3.1) and alerted you to the fact that the Bayesian

network factorization also implies the local Markov assumption (the

two are equivalent), it turns out that the global Markov assumption also

implies the local Markov assumption. In other words, the local Markov

assumption, global Markov assumption, and the Bayesian network fac-

torization are equivalent all [see, e.g., 12, Chapter 3]. Therefore, we will

use the slightly shortened phraseMarkov assumption to refer to these

concepts as a group, or we will simply write “% is Markov with respect

to �” to convey the same meaning.

3.8 Flow of Association and Causation

Now that we have covered the necessary preliminaries (chains, forks,

colliders, and d-separation), it is worth emphasizing how association and

causation flow in directed graphs. Association flows along all unblocked

paths. In causal graphs, causation flows along directed paths. Recall from

Section 1.3.2 that not only is association not causation, but causation is a

sub-category of association. That’s why association and causation both

flow along directed paths.

We refer to the flowof association along directed paths as causal association.
A common type of non-causal association that makes total association

not causation is confounding association. In the graph in Figure 3.16, we

depict the confounding association in red and the causal association in

blue.

-

) .

confounding association

causal association

Figure 3.16: Causal graph depicting an

example of how confounding association

and causal association flow.

Regular Bayesian networks are purely statistical models, so we can only

talk about the flow of association in Bayesian networks. Association still

flows in exactly the same way in Bayesian networks as it does in causal

graphs, though. In both, association flows along chains and forks, unless

a node is conditioned on. And in both, a collider blocks the flow of

association, unless it is conditioned on. Combining these building blocks,

we get how association flows in general DAGs. We can tell if two nodes
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8
Recall that the first part of the minimal-

ity assumption is just the local Markov

assumption and that the second part is

contained in the causal edges assumption.

are not associated (no association flows between them) by whether or

not they are d-separated.

Causal graphs are special in that we additionally assume that the edges

have causal meaning (causal edges assumption, Assumption 3.3). This

assumption is what introduces causality into our models, and it makes

one type of path takes on a whole new meaning: directed paths. This

assumption endows directed paths with the unique role of carrying

causation along them. Additionally, this assumption is asymmetric; “-

is a cause of .” is not the same as saying “. is a cause of - .” This means

that there is an important difference between association and causation:

association is symmetric, whereas causation is asymmetric.

Given that we have tools to measure association, how can we isolate

causation? In other words, how can we ensure that the association we

measure is causation, say, for measuring the causal effect of - on .?

Well, we can do that by ensuring that there is no non-causal association

flowing between - and .. This is true if - and . are d-separated in

the augmented graph where we remove outgoing edges from -. This

is because when all of -’s causal effect on . would flow through it’s

outgoing edges; once those are removed, the only association that remains

is purely non-causal association.

In Figure 3.17, we illustrate what each of the important assumptions

gives us in terms of interpreting this flow of association. First, we have

the (local/global) Markov assumption (Assumption 3.1). As we saw

in Section 3.7, this assumption allows us to know which nodes are

unassociated. In other words, the Markov assumption tells along which

paths the association does not flow. When we slightly strengthen the

Markov assumption to the minimality assumption (Assumption 3.2),

we get which paths association does flow along (except in intransitive

edges cases). When we further add in the causal edges assumption

(Assumption 3.3), we get that causation flows along directed paths.

Therefore, the following two
8
assumptions are essential for graphical

causal models:

1. Markov Assumption (Assumption 3.1)

2. Causal Edges Assumption (Assumption 3.3)

Statistical

Independencies

Statistical

Dependencies

Causal

Dependencies

Markov

Assumption

Minimality

Assumption

Causal Edges

Assumption

Figure 3.17: A flowchart that illustrates what kind of claims we can make about our data as we add each additional important assumption.
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Causal models are essential for identification of causal quantities. When

we presented the Identification-Estimation Flowchart (Figure 2.5) back

in Section 2.4, we described identification as the process of moving

from a causal estimand to a statistical estimand. However, to do that,

we must have a causal model. We depict this more full version of the

Identification-Estimation Flowchart in Figure 4.1.

Causal Estimand Causal Model

Statistical Estimand Data

Estimate

Figure 4.1: The Identification-Estimation Flowchart – a flowchart that illustrates the process

of moving from a target causal estimand to a corresponding estimate, through identification

and estimation. In contrast to Figure 2.5, this version is augmented with a causal model

and data.

The previous chapter gives graphical intuition for causal models, but it

doesn’t explain how to identify causal quantities and formalize causal

models. We will do that in this chapter.

4.1 The do-operator and Interventional
Distributions

The first thing that we will introduce is a mathematical operator for

intervention. In the regular notation for probability, we have conditioning,

but that isn’t the same as intervening. Conditioning on ) = C just means

that we are restricting our focus to the subset of the population to those

who received treatment C. In contrast, an intervention would be to take

the whole population and give everyone treatment C. We illustrate this in

Figure 4.2. We will denote intervention with the do-operator: do() = C).
This is the notation commonly used in graphical causal models, and it has

equivalents in potential outcomes notation. For example, we can write

the distribution of the potential outcome .(C) that we saw in Chapter 2

as follows:

%(.(C) = H) , %(. = H | do() = C)) , %(. = H | do(C)) (4.1)

Note that we shorten do() = C) to just do(C) in the last option in Equation

4.1. We will use this shorthand throughout the book. We can similarly

write the ATE (average treatment effect) when the treatment is binary as

follows:

E[. | do() = 1)] − E[. | do() = 0)] (4.2)
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Population

) = 1

Conditioning

) = 1) = 0

) = 0

do() = 1)

do() = 0)

InterveningSubpopulations

oror

Figure 4.2: Illustration of the difference between conditioning and intervening

We will often work with full distributions like %(. | do(C)), rather than
their means, as this is more general; if we characterize %(. | do(C)), then
we’ve characterized E[. | do(C)]. We will commonly refer to %(. | do() =

C)) and other expressions with the do-operator in them as interventional
distributions.

Interventional distributions such as %(. | do() = C)) are conceptually

quite different from the observational distribution %(.). Observational

distributions such as %(.) or %(., ), -) do not have the do-operator in
them. Because they don’t have the do-operator, we can observe data from

them without needing to carry out any experiment. This is why we call

data from %(., ), -) observational data. If we can reduce an expression

& with do in it (an interventional expression) to one without do in it (an

observational expression), then & is said to be identifiable. An expression

with a do in it is fundamentally different from an expression without a

do in it, despite the fact that in do-notation, do appears after a regular

conditioning bar. As we discussed in Section 2.4, we will refer to an

estimand as a causal estimand when it contains a do-operator, and we

refer to an estimand as a statistical estimand when it doesn’t contain a

do-operator.

Whenever, do(C) appears after the conditioning bar, it means that ev-

erything in that expression is in the post-intervention world where the

intervention do(C) occurs. For example, E[. | do(C), / = I] refers to the

expected outcome in the subpopulation where / = I after the whole

subpopulation has taken treatment C. In contrast, E[. | / = I] simply

refers to the expected value in the (pre-intervention) population where

individuals take whatever treatment they would normally take ()). This

distinction will become important when we get to counterfactuals in

Chapter 8.
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2
Yes, the word “consistent” is extremely

overloaded.

4.2 The Main Assumption: Modularity

Before we can describe a very important assumption, we must specify

what a causal mechanism is. There are a few different ways to think about

causal mechanisms. In this section, we will refer to the causal mechanism

that generates -8 as the conditional distribution of -8 given all of its

causes: %(G8 | pa8). As we show graphically in Figure 4.3, the causal

mechanism that generates -8 is all of -8 ’s parents and their edges that go

into -8 . We will give a slightly more specific description of what a causal

mechanism is in Section 4.5.1, but these suffice for now.

-8

Figure 4.3:A causal graph with the causal

mechanism that generates -8 depicted in-

side an ellipse.

In order to get many causal identification results, the main assumption

we will make is that interventions are local. More specifically, we will

assume that intervening on a variable -8 only changes the causal mech-

anism for -8 ; it does not change the causal mechanisms that generate

any other variables. In this sense, the causal mechanisms are modular.
Other names that are used for the modularity property are independent
mechanisms, autonomy, and invariance. We will now state this assumption

more formally.

Assumption 4.1 (Modularity / IndependentMechanisms / Invariance)

If we intervene on a set of nodes ( ⊆ [=],1 1
Weuse [=] to refer to the set {1, 2, . . . , =}.setting them to constants, then for

all 8, we have the following:

1. If 8 ∉ (, then %(G8 | pa8) remains unchanged.
2. If 8 ∈ (, then %(G8 | pa8) = 1 if G8 is the value that -8 was set to by

the intervention; otherwise, ?(G8 | pa8) = 0.

In the second part of the above assumption, we could have alternatively

said %(G8 | pa8) = 1 if G8 is consistent with the intervention2 and 0 otherwise.

More explicitly, we will say (in the future) that if 8 ∈ (, a value G8 is

consistent with the intervention if G8 equals the value that -8 was set to

in the intervention.

The modularity assumption is what allows us to encode many different

interventional distributions all in a single graph. For example, it could be

the case that%(.),%(. | do() = C),%(. | do() = C′), and%(. | do()2 = C2)
are all completely different distributions that share almost nothing. If

this were the case, then each of these distributions would need their own

graph. However, by assuming modularity, we can encode them all with

the same graph that we use to encode the joint %(., ), )2 , . . . ), and we

can know that all of the factors (except ones that are intervened on) are

shared across these graphs.

The causal graph for interventional distributions is simply the same

graph that was used for the observational joint distribution, but with

all of the edges to the intervened node(s) removed. This is because the

probability for the intervened factor has been set to 1, so we can just

ignore that factor (this is the focus of the next section). Another way to

see that the intervened node has no causal parents is that the intervened

node is set to a constant value, so it no longer depends on any of the

variables it depends on in the observational setting (its parents). The

graph with edges removed is known as the manipulated graph.
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3
The other key principle is the global

Markov assumption (Theorem 3.1), which

is the assumption that d-separation im-

plies conditional independence.

For example, consider the causal graph for an observational distribution

in Figure 4.4a. Both %(. | do() = C) and %(. | do() = C′) correspond
to the causal graph in Figure 4.4b, where the incoming edge to ) has

been removed. Similarly, %(. | do()2 = C2) corresponds to the graph

in Figure 4.4c, where the incoming edges to )2 have been removed.

Although it is not expressed in the graphs (which only express conditional

independencies and causal relations), under the modularity assumption,

%(.), %(. | ) = C′), and %(. | do()2 = C2) all shared the exact same

factors (that are not intervened on).

.

)
)2

)3

(a) Causal graph for observational distri-

bution

.

)
)2

)3

(b) Causal graph after intervention on )
(interventional distribution)

.

)
)2

)3

(c) Causal graph after intervention on )2

(interventional distribution)

Figure 4.4: Intervention as edge deletion in causal graphs

What would it mean for the modularity assumption to be violated?

Imagine that you intervene on -8 , and this causes the mechanism that

generates a different node -9 to change; an intervention on -8 changes

%(G 9 | pa9), where 9 ≠ 8. In other words, the intervention is not local to

the node you intervene on; causal mechanisms are not invariant to when

you change other causal mechanisms; the causal mechanisms are not

modular.

This assumption is so important that Judea Pearl refers to a closely

related version (which we will see in Section 4.5.2) as The Law of
Counterfactuals (and Interventions), one of two key principles from

which all other causal results follow.
3
Incidentally, taking the modularity

assumption (Assumption 4.1) and the Markov assumption (the other key

principle) together gives us causal Bayesian networks. We’ll now move to

one of the important results that follow from these assumptions.

4.3 Truncated Factorization

Recall the Bayesian network factorization (Definition 3.1), which tells us

that if % is Markov with respect to a graph �, then % factorizes as follows:

%(G1 , . . . , G=) =
∏
8

%(G8 | pa8) (4.3)

where pa8 denotes the parents of -8 in �. Now, if we intervene on some

set of nodes ( and assume modularity (Assumption 4.1), then all of the

factors should remain the same except the factors for-8 ∈ (; those factors
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should change to 1 (for values consistent with the intervention) because

those variables have been intervened on. This is how we get the truncated
factorization.

Proposition 4.1 (Truncated Factorization) We assume that % and� satisfy
the Markov assumption and modularity. Given, a set of intervention nodes (,
if G is consistent with the intervention, then

%(G1 , . . . , G= | do(( = B)) =
∏
8∉(

%(G8 | pa8) . (4.4)

Otherwise, %(G1 , . . . , G= | do(( = B)) = 0.

The key thing that changedwhenwemoved from the regular factorization

in Equation 4.3 to the truncated factorization in Equation 4.4 is that the

latter’s product is only over 8 ∉ ( rather than all 8. In other words, the

factors for 8 ∈ ( have been truncated.

4.3.1 Example Application and Revisiting “Association is
Not Causation”

To see the power that the truncated factorization gives us, let’s apply it

to identify the causal effect of treatment on outcome in a simple graph.

Specifically, we will identify the causal quantity %(H | do(C)). In this

example, the distribution % is Markov with respect to the graph in Figure

4.5. The Bayesian network factorization (from the Markov assumption),

gives us the following:

%(H, C, G) = %(G)%(C | G)%(H | C , G) (4.5)

-

) .

Figure 4.5: Simple causal structure where

- counfounds the effect of ) on . and

where - is the only confounder.

When we intervene on the treatment, the truncated factorization (from

adding the modularity assumption) gives us the following:

%(H, G | do(C)) = %(G)%(H | C , G) (4.6)

Then, we simply need to marginalize out G to get what we want:

%(H | do(C)) =
∑
G

%(H | C , G)%(G) (4.7)

We assumed - is discrete when we summed over its values, but we can

simply replace the sum with an integral if - is continuous. Throughout

this book, that will be the case, so we usually won’t point it out.

If we massage Equation 4.7 a bit, we can clearly see how association is not

causation. The purely associational counterpart of %(H | do(C)) is %(H | C).
If the %(G) in Equation 4.7 were %(G | C), then we would actually recover

%(H | C). We briefly show this:∑
G

%(H | C , G)%(G | C) =
∑
G

%(H, G | C) (4.8)

= %(H | C) (4.9)

This gives some concreteness to the difference between association

and causation. In this example (which is representative of a broader
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4
Aswementioned in Section 3.8, blocking

all backdoor paths is equivalent to having

d-separation in the graph where edges

going out of) are removed. This is because

these are the only edges that causation

flows along, so once they are removed, all

that remains is non-causation association.

5
Active reading exercise: In a generalDAG,

which set of nodes related to) will always

be a sufficient adjustment set? Which set

of nodes related to . will always be a

sufficient adjustment set?

phenomenon), the difference between %(H | do(C)) and %(H | C) is the
difference between %(G) and %(G | C).

To round this example out, say ) is a binary random variable, and we

want to compute the ATE. %(H | do() = 1)) is the distribution for .(1), so
we can just take the expectation to get E[.(1)]. Similarly, we can do the

same thing with .(0). Then, we can write the ATE as follows:

E[.(1) − .(0)] =
∑
H

H %(H | do() = 1)) −
∑
H

H %(H | do() = 0)) (4.10)

If we then plug in Equation 4.7 for %(H | do() = 1)) and %(H | do() = 0)),
we have a fully identified ATE. Given the simple graph in Figure 4.5, we

have shown howwe can use the truncated factorization to identify causal

effects in Equations 4.5 to 4.7. We will now generalize this identification

process to a more general formula.

4.4 The Backdoor Adjustment

Recall from Chapter 3 that causal association flows from ) to . along

directed paths and that non-causal association flows along any other

paths from ) to . that aren’t blocked by either 1) a non-collider that

is conditioned on or 2) a collider that isn’t conditioned on. These non-

directed unblocked paths from) to. are known as backdoor paths because
they have an edge that goes in the “backdoor” of the ) node. And it turns

out that if we can block these paths by conditioning, we can identify

causal quantities like %(. | do(C)).4

This is precisely what we did in the previous section. We blocked the

backdoor path ) ← - → . in Figure 4.5 simple by conditioning on -

and marginalizing it out (Equation 4.7). In this section, we will generalize

Equation 4.7 to arbitrary DAGs. But before we do that, let’s graphically

consider why the quantity %(H | do(C)) is purely causal.

As we discussed in Section 4.2, the graph for the interventional dis-

tribution %(. | do(C)) is the same as the graph for the observational

distribution %(., ), -), but with the incoming edges to ) removed. For

example, if we take the graph from Figure 4.5 and intervene on ), then

we get the manipulated graph in Figure 4.6. In this manipulated graph,

there cannot be any backdoor paths because no edges are going into the

backdoor of ). Therefore, all of the association that flows from ) to . in

the manipulated graph is purely causal.

-

) .

Figure 4.6:Manipulated graph that results

from intervening on ), when the original

graph is

With that digression aside, let’s prove that we can identify %(H | do(C)).
Wewant to turn the causal estimand%(H | do(C)) into a statistical estimand

(only relies on the observational distribution). We’ll start with assuming

we have a set of variables, that satisfy the backdoor criterion:

Definition 4.1 (Backdoor Criterion) A set of variables , satisfies the
backdoor criterion relative to ) and . if the following are true:

1. , blocks all backdoor paths from ) to ..
2. , does not contain any descendants of ).
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6
We will come back to what goes wrong

if we condition on descendants of ) in Sec-

tion 4.5.3, after we cover some important

concepts that we need before we can fully

explain that.

Satisfying the backdoor criterion makes, a sufficient adjustment set.5
We saw an example of - as a sufficient adjustment set in Section 4.3.1.

Because there was only a single backdoor path in Section 4.3.1, a single

node (-) was enough to block all backdoor paths, but, in general, there

can be multiple backdoor paths.

To introduce, into the proof, we’ll use the usual trick of conditioning

on variables and marginalizing them out:

%(H | do(C)) =
∑
F

%(H | do(C), F)%(F | do(C)) (4.11)

Given that, satisfies the backdoor criterion, we can write the following:

∑
F

%(H | do(C), F)%(F | do(C)) =
∑
F

%(H | C , F)%(F | do(C)) (4.12)

This follows from themodularity assumption (Assumption 4.1). If, is all

of the parents for . (other than )), it should be clear that the modularity

assumption immediately implies %(H | do(C), F) = %(H | C , F). If, isn’t

the parents of . but still blocks all backdoor paths another way, then this

equality is still true but requires using the graphical knowledge we built

up in Chapter 3.

In the manipulated graph (for %(H | do(C), F)), all of the )-. association

flows along the directed path(s) from ) to ., since there cannot be

any backdoor paths because ) has no incoming edges. Similarly, in the

regular graph (for %(H | C , F)), all of the )-. association flows along

the directed path(s) from ) to .. This is because, even though there

exist backdoor paths, the association that would flow along them is

blocked by, , leaving association to only flow along directed paths. In

both cases, association flows along the exact same directed paths, which

correspond to the exact same conditional distributions (by themodularity

assumption).

Although we’ve justified Equation 4.12, there is still a do in the expression:

%(F | do(C)). However, %(F | do(C)) = %(F). To see this, consider how )

might have influence, in the manipulated graph. It can’t be through

any path that has an edge into ) because ) doesn’t have any incoming

edges in the manipulated graph. It can’t be through any path that has an

edge going out of ) because such a path would have to have a collider,

that isn’t conditioned on, on the path. We know any such colliders are

not conditioned on because we have assumed that, does not contain

descendants of ) (second part of the backdoor criterion).
6
Therefore, we

can write the final step:∑
F

%(H | C , F)%(F | do(C)) =
∑
F

%(H | C , F)%(F) (4.13)

This is known as the backdoor adjustment.

Theorem 4.2 (Backdoor Adjustment) Given the modularity assumption
(Assumption 4.1) and that, satisfies the backdoor criterion (Definition 4.1)



4 Causal Models 38

we can identify the causal effect of ) on .:

%(H | do(C)) =
∑
F

%(H | C , F)%(F)

Here’s a concise recap of the proof (Equations 4.11 to 4.13) without all of

the explanation/justification:

Proof.

%(H | do(C)) =
∑
F

%(H | do(C), F)%(F | do(C)) (4.14)

=
∑
F

%(H | C , F)%(F | do(C)) (4.15)

=
∑
F

%(H | C , F)%(F) (4.16)

4.4.1 Relation to Potential Outcomes

Hmm, the backdoor adjustment (Theorem 4.2) looks quite similar to

the adjustment formula (Theorem 2.1) that we saw back in the potential

outcomes chapter:

E[.(1) − .(0)] = E, [E[. | ) = 1, ,] − E[. | ) = 0, ,]] (4.17)

We can derive this from the more general backdoor adjustment in a few

steps. First, we take an expectation over .:

E[. | do(C)] =
∑
F

E[. | C , F]%(F) (4.18)

Then, we notice that the sum over F and %(F) is an expectation (for

discrete G, but just replace with an integral if not):

E[. | do(C)] = E,E[. | C ,,] (4.19)

And finally, we look at the difference between ) = 1 and ) = 0:

E[. | do() = 1)] −E[. | do() = 0)] = E, [E[. | ) = 1,,] − E[. | ) = 0,,]]
(4.20)

Since the do-notation E[. | do(C)] is just another notation for the potential

outcomes E[.(C)], we are done! If you remember, one of the main as-

sumptions we needed to get Equation 4.17 (Theorem 2.1) was conditional

exchangeability (Assumption 2.2), which we repeat below:

(.(1), .(0)) ⊥⊥ ) | , (4.21)

However, we had no way of knowing how to choose , or knowing

that that, actually gives us conditional exchangeability. Well, using

graphical causal models, we know how to choose a valid, : we simply

choose , so that it satisfies the backdoor criterion. Then, under the

assumptions encoded in the causal graph, conditional exchangeability

provably holds; the causal effect is provably identifiable.
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4.5 Structural Causal Models (SCMs)

Graphical causal models such as causal Bayesian networks give us

powerful ways to encode statistical and causal assumptions, but we have

yet to explain exactly what an intervention is or exactly what a causal

mechanism is. Moving from causal Bayesian networks to full structural

causal models will give us this additional clarity along with the power to

compute counterfactuals.

4.5.1 Structural Equations

As Judea Pearl often says, the equals sign in mathematics does not convey

any causal information. Saying � = � is the same as saying � = �.

Equality is symmetric. However, in order to talk about causation, we

must have something asymmetric. We need to be able to write that �

is a cause of �, meaning that changing � results in changes in �, but

changing � does not result in changes in �. This is what we get when we

write the following structural equation:

� := 5 (�) , (4.22)

where 5 is some function that maps � to �. While the usual “=” symbol

does not give us causal information, this new “:=” symbol does. This

is a major difference that we see when moving from statistical models

to causal models. Now, we have the asymmetry we need to describe

causal relations. However, the mapping between � and � is deterministic.

Ideally, we’d like to allow it to be probabilistic, which allows room for

some unknown causes of � that factor into this mapping. Then, we can

write the following:

� := 5 (�,*) , (4.23)

where* is someunobserved randomvariable.Wedepict this in Figure 4.7,

where* is drawn inside a dashed node to indicate that it is unobserved.

The unobserved * is analogous to the randomness that we would

see by sampling units (individuals); it denotes all the relevant (noisy)

background conditions that determine �. More concretely, there are

analogs to every part of the potential outcome .8(C): � is the analog of .,

� = 0 is the analog of ) = C, and* is the analog of 8.

�

� *

Figure 4.7: Graph for simple structural

equation. The dashed node* means that

* is unobserved.

The functional form of 5 does not need to be specified, and when

left unspecified, we are in the nonparametric regime because we aren’t

making any assumptions about parametric form. Although the mapping

is deterministic, because it takes a random variable * (a “noise” or

“background conditions” variable) as input, it can represent any stochastic

mapping, so structural equations generalize the probabilistic factors

%(G8 | pa8) that we’ve been using throughout this chapter. Therefore, all

the results that we’ve seen such as the truncated factorization and the

backdoor adjustment still holdwhenwe introduce structural equations.

Cause and Causal Mechanism Revisited We have now come to the

more precise definitions of what a cause is (Definition 3.2) and what a

causal mechanism is (introduced in Section 4.2). A causal mechanism

that generates a variable is the structural equation that corresponds to

that variable. For example, the causal mechanism for � is Equation 4.23.
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7
Trust me; the recursion ends. The base

case was specified.

-

) .

Figure 4.9: Basic causal graph

Similarly, - is a direct cause of . if - appears on the right-hand side of

the structural equation for .. We say that - is a cause of . if - is a direct

cause of any of the causes of .7
or if - is a direct cause of ..

We only showed a single structural equation in Equation 4.23, but there

can be a large collection of structural equations in a single model, which

we will commonly label". For example, we write structural equations

for Figure 4.8 below:

" :

� := 5�(�,*�)
� := 5�(�, �,*�)
� := 5�(�, �,*�)

(4.24)

�

� *�

�

*�

�

*�

Figure 4.8: Graph for the structural equa-

tions in Equation 4.24.

In causal graphs, the noise variables are often implicit, rather than

explicitly drawn. The variables that we write structural equations for

are known as endogenous variables. These are the variables whose causal

mechanisms we are modeling – the variables that have parents in the

causal graph. In contrast, exogenous variables are variables who do not

have any parents in the causal graph; these variables are external to our

causal model in the sense that we choose not to model their causes. For

example, in the causal model described by Figure 4.8 and Equation 4.24,

the endogenous variables are {�, �, �}. And the exogenous variables

are {�,*� , *� , *�}.

Definition 4.2 (Structural Causal Model (SCM)) A structural causal
model is a tuple of the following sets:

1. A set of endogenous variables +
2. A set of exogenous variables*
3. A set of functions 5 , one to generate each endogenous variable as a

function of other variables

For example, ", the set of three equations above in Equation 4.24

constitutes an SCMwith corresponding causal graph in Figure 4.8. Every

SCM implies an associated causal graph: for each structural equation,

draw an edge from every variable on the right-hand side to the variable

on the left-hand side.

If the causal graph contains no cycles (is a DAG) and the noise variables

* are independent, then the causal model is Markovian; the distribution
% is Markov with respect to the causal graph. If the causal graph doesn’t

contain cycles but the noise terms are dependent, then the model is semi-
Markovian. For example, if there is unobserved confounding, the model

is semi-Markovian. Finally, the graphs of non-Markovian models contain

cycles. We will largely be considering Markovian and semi-Markovian

models in this book.

4.5.2 Interventions

Interventions in SCMs are remarkably simple. The intervention do() = C)
simply corresponds to replacing the structural equation for ) with ) := C.

For example, consider the following causal model" with corresponding

causal graph in Figure 4.9:
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[5]: Holland (1986), ‘Statistics and Causal

Inference’

[16]: Pearl (2009), ‘Causal inference in

statistics: An overview’

8
Active reading exercise: Can you recall

which was the other key principle/as-

sumption?

Active reading exercise: Take what you

now know about structural equations,

and relate it to other parts of this chap-

ter. For example, how do interventions in

structural equations relate to the modu-

larity assumption? How does the mod-

ularity assumption for SCMs (Assump-

tion 4.2) relate to the modularity assump-

tion in causal Bayesian networks (Assump-

tion 4.1)? Does this modularity assump-

tion for SCMs still give us the backdoor

adjustment?

" :

) := 5)(-,*))
. := 5.(-, ),*.)

(4.25)

If we then intervene on ) to set it to C, we get the interventional SCM"C

below and corresponding manipulated graph in Figure 4.10.

"C :

) := C

. := 5.(-, ),*.)
(4.26)

-

) .

Figure 4.10: Basic causal with the the in-

coming edges to ) removed, due to the

intervention do() = C).

The fact that do() = C) only changes the equation for ) and no other

variables is a consequence of the modularity assumption; these causal

mechanisms (structural equations) are modular. Assumption 4.1 states

the modularity assumption in the context of causal Bayesian networks,

but we need a slightly different translation of this assumption for SCMs.

Assumption 4.2 (Modularity Assumption for SCMs) Consider an SCM
" and an interventional SCM"C that we get by performing the intervention
do() = C). The modularity assumption states that " and "C share all of
their structural equations except the structural equation for ), which is ) := C

in"C .

In other words, the intervention do() = C) is localized to ). None of the

other structural equations change because they are modular; the causal

mechanisms are independent. The modularity assumption for SCMs is

what gives us what Pearl calls the The Law of Counterfactuals, which

we briefly mentioned at the end of Section 4.2, after we defined the

modularity assumption for causal Bayesian networks. But before we can

get to that, we must first introduce a bit more notation.

In the causal inference literature, there are many different ways of writing

the unit-level potential outcome. In Chapter 2, we used .8(C). However,

there are other ways such as .C
8
or even .C(D). For example, in his

prominent potential outcomes paper, Holland [5] uses the .C(D) notation.
In this notation, D is the analog of 8, just as we mentioned is the case

for the * in Equation 4.23 and the paragraph that followed it. This is

the notation that Pearl uses for SCMs as well [see, e.g., 16, Definition

4]. So .C(D) denotes the outcome that unit D would observe if they take

treatment C, given that the SCM is ". Similarly, we define ."C (D) as
the outcome that unit D would observe if they take treatment C, given

that the SCM is"C (remember that"C is the same SCM as" but with

the structural equation for ) changed to ) := C). Now, we are ready to

present one of Pearl’s two key principles from which all other causal

results follow:
8

Definition 4.3 (The Law of Counterfactuals (and Interventions))

.C(D) = ."C (D) (4.27)

This is called “The Law of Counterfactuals” because it gives us informa-

tion about counterfactuals. Given an SCM with enough details about it

specified, we can actually compute counterfactuals. This is a big deal

because this is exactly what the fundamental problem of causal inference

(Section 2.2) told us we cannot do. We won’t say more about how to do

this until we get to the dedicated chapter for counterfactuals: Chapter 8.
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,

") .

Figure 4.11: Causal graph where all cau-

sation is blocked by conditioning on".

,

") .

Figure 4.12: Causal graph where part of

the causation is blocked by conditioning

on".

,

) .

/

Figure 4.13: Causal graph where condi-

tioning on the collider / induces bias.

,

") .

/

Figure 4.14: Causal graph where the child

of a mediator is conditioned on.

4.5.3 Collider Bias and Why to Not Condition on
Descendants of Treatment

In defining the backdoor criterion (Definition 4.1) for the backdoor

adjustment (Theorem 4.2), not only did we specify that the adjustment

set, blocks all backdoor paths, but we also specified that, does not

contain any descendants of ). Why? There are two categories of things

that could go wrong if we condition on descendants of ):

1. We block the flow of causation from ) to ..

2. We induce non-causal association between ) and ..

As we’ll see, it is fairly intuitive why we want to avoid the first category.

The second category is a bit more complex, and we’ll break it up into two

different parts, each with their own paragraph. This more complex part

is actually why we delayed this explanation to after we introduced SCMs,

rather than back when we introduced the backdoor criterion/adjustment

in Section 4.4.

If we condition on a node that is on a directed path from ) to ., then we

block the flow of causation along that causal path. We will refer to a node

on a directed path from ) to . as a mediator, as it mediates the effect of

) on .. For example, in Figure 4.11, all of the causal flow is blocked by

". This means that we will measure zero association between ) and .

(given that, blocks all backdoor paths). In Figure 4.12, only a portion of

the causal flow is blocked by". This is because causation can still flow

along the ) → . edge. In this case, we will get a non-zero estimate of

the causal effect, but it will still be biased, due to the causal flow that"

blocks.

If we condition on a descendant of) that isn’t amediator, it could unblock

a path from ) to . that was blocked by a collider. For example, this is

the case with conditioning on / in Figure 4.13. This induces non-causal

association between ) and ., which biases the estimate of the causal

effect. Consider the following general kind of path, where → · · · →
denotes a directed path: ) → · · · → /← · · · ← .. Conditioning on /,

or any descendant of / in a path like this, will induce collider bias. That
is, the causal effect estimate will be biased by the non-causal association

that we induce when we condition on / or any of its descendants (see

Section 3.6).

What about conditioning on / in Figure 4.14? Would that induce bias?

Recall that graphs are frequently drawn without explicitly drawing

the noise variables. If we magnify part of the graph, making "’s noise

variable explicit, we get Figure 4.15. Now, we see that ) → " ← *"

forms an immorality. Therefore, conditioning on / induces an association

between ) and*" . This induced non-causal association is another form

of collider bias. You might find this unsatisfying because . is not one

of the immoral parents here; rather ) and *" are the ones living the

immoral lifestyle. So why would this change the association between )

and .? One way to get the intuition for this is that there is now induced

association flowing between ) and*" through the edge ) → ", which

is also an edge that causal association is flowing along. You can think of

these two types of association getting tangled up along the ) → " edge,

making the observed association between ) and . not purely causal. See

Pearl [17, Section 11.3.1 and 11.3.3] for more information on this topic.
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,

*"

") .

/

Figure 4.15: Magnified causal graph

where the child of a mediator is condi-

tioned on.

/2

) .

/1
/3

Figure 4.16: Causal graph depicting M-

Bias.

Note that we actually can condition on some descendants of ) without

inducing non-causal associations between ) and .. For example, condi-

tioning on descendants of ) that aren’t on any causal paths to . won’t

induce bias. However, as you can see from the above paragraph, this can

get a bit tricky, so it is safest to just not condition on any descendants of

), as the backdoor criterion prescribes. Even outside of graphical causal

models (e.g. in potential outcomes literature), this rule is often applied; it

is usually described as not conditioning on any pretreatment covariates.

M-Bias Unfortunately, even if we only condition on pretreatment co-

variates, we can still induce collider bias. Consider what would happen

if we condition on the collider /2 in Figure 4.16. Doing this opens up

a backdoor path, along which non-causal association can flow. This is

known as M-bias due to the M shape that this non-causal association

flows along when the graph is drawn with children below their parents.

For many examples of collider bias, see Elwert and Winship [18].

4.6 Example Applications of the Backdoor
Adjustment

4.6.1 Association vs. Causation in a Toy Example

In this section, we posit a toy generative process and derive the bias of the

associational quantity E[. | C]. We compare this to the causal quantity

E[. | do(C)], which gives us exactly what we want. Note that both of

these quantities are actually functions of C. If the treatment were binary,

then we would just look at the difference between the quantities with

) = 1 and with ) = 0. However, because our generative processes will be

linear,
3 E[. |C]
3C and

3 E[. |do(C)]
3C actually gives us all the information about

the treatment effect, regardless of if treatment is continuous, binary, or

multi-valued. We will assume infinite data so that we can work with

expectations. This means this section has nothing to do with estimation;

for estimation, see the next section

The generative process thatwe consider has the causal graph in Figure 4.17

and the following structural equations:

) := 1- (4.28)

. := �) + 2- . (4.29)

Note that in the structural equation for ., � is the coefficient in front of ).

This means that the causal effect of ) on . is �. Keep this in mind as we

go through these calculations.

-

) .

 1

2

�

Figure 4.17: Causal graph for toy example
From the causal graph in Figure 4.17, we can see that - is a sufficient

adjustment set. Therefore, E[. | do(C)] = E-E[. | C , -]. Let’s calculate
the value of this quantity in our example.

E-E[. | C , -] = E-
[
E[�) + 2- | ) = C , -]

]
(4.30)

= E-
[
�C + 2-

]
(4.31)

= �C + 2E[-] (4.32)
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illustration and web application’

Importantly, we made use of the equality that the structural equation for

. (Equation 4.29) gives us in Equation 4.30. Now, we just have to take

the derivative to get the causal effect:

3 E-E[. | C , -]
3C

= � . (4.33)

We got exactly what we were looking for. Now, let’s move to the associa-

tional quantity:

E[. | ) = C] = E[�) + 2- | ) = C] (4.34)

= �C + 2E[- | ) = C] (4.35)

= �C + 2

1

C (4.36)

In Equation 4.36, we made use of the equality that the structural equation

for ) (Equation 4.28) gives us. If we then take the derivative, we see that

there is confounding bias:

3 E[. | C]
3C

= � + 2

1

. (4.37)

To recap, E-E[. | C , -] gave us the causal effect we were looking for

(Equation 4.33), whereas the associational quantity E[. | C] did not

(Equation 4.37). Now, let’s go through an example that also takes into

account estimation.

4.6.2 A Complete Example with Estimation

Recall that we estimated a concrete value for the causal effect of sodium

intake on blood pressure in Section 2.5. There, we used the potential

outcomes framework. Here, we will do the same thing, but using causal

graphs. The spoiler is that the 19% error that we saw in Section 2.5 was

due to conditioning on a collider.

First, we need to write down our causal assumptions in terms of a causal

graph. Remember that in Luque-Fernandez et al. [8]’s example from

epidemiology, the treatment ) is sodium intake, and the outcome . is

blood pressure. The covariates are age, and amount of protein in urine

(proteinuria) /. Age is a common cause of both blood pressure and the

body’s ability to self-regulate sodium levels. In contrast, high amounts

of urinary protein are caused by high blood pressure and high sodium

intake. This means that proteinuria is a collider. We depict this causal

graph in Figure 4.18.

,

) .

/

Figure 4.18: Causal graph for the blood

pressure example. ) is sodium intake. .
is blood pressure., is age. And, impor-

tantly, the amount of protein excreted in

urine / is a collider.

Because / is a collider, conditioning on it induces bias. Because, and /

were grouped together as “covariates” - in Section 2.5, we conditioned

on all of them. This is why we saw that our estimate was 19% off from

the true causal effect 1.05. Now that we’ve made the causal relationships

clear with a causal graph, the backdoor criterion (Definition 4.1) tells us

to only adjust for, and to not adjust for /. More precisely, we were

doing the following adjustment in Section 2.5:

E,,/E[. | C , ,, /] (4.38)
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9
Active reading exercise: Given that . is

generated as a linear function of ) and, ,

could we have just used the coefficient in

front of ) in the linear regression as an

estimate for the causal effect?

/2

) .

/1
/3

Figure 4.19: Causal graph depicting M-

Bias that can only be avoided by not con-

ditioning on the collider /2. This is due to

the fact that the dashed nodes /1 and /3

are unobserved.

And now, we will use the backdoor adjustment (Theorem 4.2) to change

our statistical estimand to the following:

E,E[. | C , ,] (4.39)

We have simply removed the collider / from the variables we adjust for.

For estimation, just as we did in Section 2.5, we use a model-assisted

estimator. We replace the outer expectation over, with an empirical

mean over, and replace the conditional expectation E[. | C , ,]with a

machine learning model (in this case, linear regression).

Just as writing down the graph has lead us to simply not condition on /

in Equation 4.39, the code for estimation also barely changes. We need to

change just a single line of code in our previous program (Listing 2.1).

We display the full program with the fixed line of code below:

Listing 4.1: Python code for estimating the

ATE, without adjusting for the collider

1 import numpy as np

2 import pandas as pd

3 from sklearn.linear_model import LinearRegression

4

5 Xt = df[['sodium', 'age']]

6 y = df['blood_pressure']

7 model = LinearRegression()

8 model.fit(Xt, y)

9

10 Xt1 = pd.DataFrame.copy(Xt)

11 Xt1['sodium'] = 1

12 Xt0 = pd.DataFrame.copy(Xt)

13 Xt0['sodium'] = 0

14 ate_est = np.mean(model.predict(Xt1) - model.predict(Xt0))

15 print('ATE estimate:', ate_est)

Full code, complete with simulation,

is available at https://github.com/

bradyneal/causal-book-code/blob/

master/sodium_example.py.

Namely, we’ve changed line 5 from

5 Xt = df[['sodium', 'age', 'proteinuria']]

in Listing 2.1 to

5 Xt = df[['sodium', 'age']]

in Listing 4.1. When we run this revised code, we get an ATE estimate of

1.0502, which corresponds to 0.02% error (true value is 1.05) when using

a fairly large sample.
9

Progression of Reducing Bias When looking at the total association

between) and. by simply regressing. on), we got an estimate that was

a staggering 407% off of the true causal effect, due largely to confounding

bias (see Section 2.5). When we adjusted for all covariates in Section 2.5,

we reduced the percent error all the way down to 19%. In this section,

we saw this remaining error is due to collider bias. When we removed

the collider bias, by not conditioning on the collider /, the error became

non-existent.

Potential Outcomes and M-Bias In fairness to the general culture

around the potential outcomes framework, it is common to only condition

on pretreatment covariates. This would prevent a practitioner who

adheres to this rule from conditioning on the collider / in Figure 4.18.

However, there is no reason that there can’t be pretreatment colliders

that induce M-bias (Section 4.5.3). In Figure 4.19, we depict an example

https://github.com/bradyneal/causal-book-code/blob/master/sodium_example.py
https://github.com/bradyneal/causal-book-code/blob/master/sodium_example.py
https://github.com/bradyneal/causal-book-code/blob/master/sodium_example.py
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of M-bias that is created by conditioning on /2. We could fix this by

additionally conditioning on /1 and/or /3, but in this example, they are

unobserved (indicated by the dashed lines). This means that the only

way to avoid M-bias in Figure 4.19 is to not condition on the covariates

/2.

4.7 Assumptions Revisited

The first main set of assumptions is encoded by the causal graph that we

write down. Exactly what this causal graph means is determined by two

main assumptions, each of which can take on several different forms:

1. The Modularity Assumption
Different forms:

I ModularityAssumption forCausal BayesianNetworks (Assumption 4.1)

I Modularity Assumption for SCMs (Assumption 4.2)

I The Law of Counterfactuals (Definition 4.3)

2. The Markov Assumption
Different equivalent forms:

I Local Markov assumption (Assumption 3.1)

I Bayesian network factorization (Definition 3.1)

I Global Markov assumption (Theorem 3.1)

Given, these two assumptions (and positivity), if the backdoor criterion

(Definition 4.1) is satisfied in our assumed causal graph, then we have

identification. Note that although the backdoor criterion is a sufficient

condition for identification, it is not a necessary condition. We will see

this more in Chapter 6.

Now that you’re familiar with causal

graphical models and SCMs, it may be

worth going back and rereading Chap-

ter 2 while trying to make connections

to what you’ve learned about graphical

causal models in these past two chapters.

More Formal If you’re really into fancy formalism, there are some

relevant sources to check out. You can see the fundamental axioms that

underlie The Law of Counterfactuals in [19, 20], or if you want a textbook,

you can find them in [17, Chapter 7.3]. To see proofs of the equivalence of

all three forms of the Markov assumption, see, for example, [12, Chapter

3].

Connections to No Interference, Consistency, and Positivity The no

interference assumption (Assumption 2.4) is commonly implicit in causal

graphs, since the outcome . (think .8) usually only has a single node )

(think)8) for treatment as a parent, rather than havingmultiple treatment

nodes)8 ,)8−1,)8+1, etc. as parents. However, causal DAGs can be extended

to settings where there is interference [21]. Consistency (Assumption 2.5)

follows from the axioms of SCMs (see [17, Corollary 7.3.2] and [22]).

Positivity (Assumption 2.3) is still a very important assumption that we

must make, though it is sometimes neglected in the graphical models

literature.
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Randomized experiments are noticeably different from observational

studies. In randomized experiments, the experimenter has complete con-

trol over the treatment assignment mechanism (how treatment is assigned).

For example, in the most simple kind of randomized experiment, the

experimenter randomly assigns (e.g. via coin toss) each participant to

either the treatment group or the control group. This complete control

over how treatment is chosen is what distinguishes randomized experi-

ments from observational studies. In this simple experimental setup, the

treatment isn’t a function of covariates at all! In contrast, in observational

studies, the treatment is almost always a function of some covariate(s).

As we will see, this difference is key to whether or not confounding is

present in our data.

In randomized experiments, association is causation. This is because

randomized experiments are special in that they guarantee that there

is no confounding. As a consequence, this allows us to measure the

causal effect E[.(1)] − E[.(0)] via the associational difference E[. | ) =

1]−E[. | ) = 0]. In the following sections, we explainwhy this is the case

from a variety of different perspectives. If any one of these explanations

clicks with you, that might be good enough. Definitely stick through to

the most visually appealing explanation in Section 5.3.

5.1 Comparability and Covariate Balance

Ideally, the treatment and control groups would be the same, in all

aspects, except for treatment. This would mean they only differ in the

treatment they receive (i.e. they are comparable). This would allow us to

attribute any difference in the outcomes of the treatment and control

groups to the treatment. Saying that these treatment groups are the same

in everything other than their treatment and outcomes is the same as

saying they have the same distribution of confounders. Because people

often check for this property on observed variables (often what people

mean by “covariates”), this concept is known as covariate balance.

Definition 5.1 (Covariate Balance) We have covariate balance if the distri-
bution of covariates - is the same across treatment groups. More formally,

%(- | ) = 1) 3=%(- | ) = 0) (5.1)

Randomization implies covariate balance, across all covariates, even

unobserved ones. Intuitively, this is because the treatment is chosen at

random, regardless of -, so the treatment and control groups should

look very similar. The proof is simple. Because ) is not at all determined

by - (solely by a coin flip), ) is independent of -. This means that
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%(- | ) = 1) 3=%(-). Similarly, it means %(- | ) = 0) 3=%(-). Therefore,
we have %(- | ) = 1) 3=%(- | ) = 0).

Although we have proven that randomization implies covariate balance,

we have not proven that that covariate balance implies identifiability.

The intuition is that covariance balance means that everything is the

same between the treatment groups, except for the treatment, so the

treatment must be the explanation for the change in .. We’ll now prove

that %(H | do() = C)) = %(H | ) = C). For the proof, the main property we

utilize is that covariate balance implies - and ) are independent.

Proof. First, let - be a sufficient adjustment set. This is the case with

randomization since we know that randomization balances everything,

not just the observed covariates. Then, we have the following from the

backdoor adjustment (Theorem 4.2):

%(H | do() = C)) =
∑
G

%(H | C , G)%(G) (5.2)

By multiplying by
%(C |G)
%(C |G) , we get the joint distribution in the numerator:

=
∑
G

%(H | C , G)%(C | G)%(G)
%(C | G) (5.3)

=
∑
G

%(H, C, G)
%(C | G) (5.4)

Now, we use the important property that - ⊥⊥ ):

=
∑
G

%(H, C, G)
%(C) (5.5)

An application of Bayes rule and marginalization gives us the rest:

=
∑
G

%(H, G | C) (5.6)

= %(H | C) (5.7)

5.2 Exchangeability

Exchangeability (Assumption 2.1) gives us another perspective on why

randomizationmakes causation equal to association. To seewhy, consider

the following thought experiment. We decide an individual’s treatment

group using a random coin flip as follows: if the coin is heads, we assign

the individual to the treatment group () = 1), and if the coins is tails,

we assign the individual to the control group () = 0). If the groups are

exchangeable, we could exchange these groups, and the average outcomes

would remain the same. This is intuitively true if we chose the groups

with a coin flip. Imagine simply swapping the meaning of “heads” and

“tails” in this experiment. Would you expect that to change the results at

all? No. This is why randomized experiments give us exchangeability.
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Recall from Section 2.3.2 that mean exchangeability is formally the

following:

E[.(1) | ) = 1] = E[.(1) | ) = 0] (5.8)

E[.(0) | ) = 0] = E[.(0) | ) = 1] (5.9)

The “exchange” is when we go from .(1) in the treatment group to .(1)
in the control group (Equation 5.8) and from .(0) in the control group to

.(0) in the treatment group (Equation 5.8).

To see the proof of why association is causation in randomized ex-

periments through the lens of exchangeability, recall the proof from

Section 2.3.2. First, recall that Equation 5.8 means that both quantities in

it are equal to the marginal expected outcome E[.(1)] and, similarly, that

Equation 5.8 means that both quantities in it are equal to the marginal

expected outcome E[.(0)]. Then, we have the following proof:

E[.(1)] − E[.(0)] = E[.(1) | ) = 1] − E[.(0) | ) = 0] (2.3 revisited)

= E[. | ) = 1] − E[. | ) = 0] (2.4 revisited)

5.3 No Backdoor Paths

The final perspective that we’ll look at to see why association is causation

in randomized experiments in that of graphical causal models. In regular

observational data, there is almost always confounding. For example, in

Figure 5.1 we see that- is a confounder of the effect of) on.. Non-causal

association flows along the backdoor path ) ← - → ..

-

) .

Figure 5.1: Causal structure of - con-

founding the effect of ) on ..

However, if we randomize ), something magical happens: ) no longer

has any causal parents, as we depict in Figure 5.2. This is because ) is

purely random. It doesn’t depend on anything other than the output of a

coin toss (or a quantum random number generator, if you’re into the kind

of stuff). Because ) has no incoming edges, under randomization, there

are no backdoor paths. So the empty set is a sufficient adjustment set. This

means that all of the association that flows from ) to . is causal. We can

identify %(. | do() = C)) by simply applying the backdoor adjustment

(Theorem 4.2), adjusting for the empty set:

%(. | do() = C)) = %(. | ) = C)

-

) .

Figure 5.2: Causal structure when we ran-

domize treatment.

With that, we conclude our discussion of why association is causation in

randomized experiments. Hopefully, at least one of these three explana-

tions is intuitive to you and easy to store in long-term memory.
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