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Preface

Prerequisites There is one main prerequisite: basic probability. This course assumes

you’ve taken an introduction to probability course or have had equivalent experience.

Topics from statistics and machine learning will pop up in the course from time to

time, so some familiarity with those will be helpful but is not necessary. For example, if

cross-validation is a new concept to you, you can learn it relatively quickly at the point in

the book that it pops up. And we give a primer on some statistics terminology that we’ll

use in Section 2.4.

Active Reading Exercises Research shows that one of the best techniques to remember

material is to actively try to recall information that you recently learned. You will see

“active reading exercises” throughout the book to help you do this. They’ll be marked by

the Active reading exercise: heading.

Many Figures in This Book As you will see, there are a ridiculous amount of figures in

this book. This is on purpose. This is to help give you as much visual intuition as possible.

We will sometimes copy the same figures, equations, etc. that you might have seen in

preceding chapters so that we can make sure the figures are always right next to the text

that references them.

Sending Me Feedback This is a book draft, so I greatly appreciate any feedback you’re

willing to send my way. If you’re unsure whether I’ll be receptive to it or not, don’t be.

Please send any feedback to me at bradyneal11@gmail.com with “[Causal Book]” in the

beginning of your email subject. Feedback can be at the word level, sentence level, section

level, chapter level, etc. Here’s a non-exhaustive list of useful kinds of feedback:

I Typoz.

I Some part is confusing.

I You notice your mind starts to wander, or you don’t feel motivated to read some

part.

I Some part seems like it can be cut.

I You feel strongly that some part absolutely should not be cut.

I Some parts are not connected well. Moving from one part to the next, you notice

that there isn’t a natural flow.

I A new active reading exercise you thought of.

Bibliographic Notes Although we do our best to cite relevant results, we don’t want to

disrupt the flow of the material by digging into exactly where each concept came from.

There will be complete sections of bibliographic notes in the final version of this book,

but they won’t come until after the course has finished.
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1
A key ingredient necessary to find Simp-

son’s paradox is the non-uniformity of
allocation of people to the groups. 1400
of the 1500 people who received treatment

A had mild condition, whereas 500 of

the 550 people who received treatment

B had severe condition. Because people

with mild condition are less likely to die,

this means that the total mortality rate

for those with treatment A is lower than

what it would have been if mild and severe

conditions were equally split among them.

The opposite bias is true for treatment B.

Motivation: Why YouMight Care 1
1.1 Simpson’s Paradox . . . . . 1
1.2 Applications of Causal Infer-

ence . . . . . . . . . . . . . . 2
1.3 Correlation Does Not Imply

Causation . . . . . . . . . . 3
Nicolas Cage and Pool
Drownings . . . . . . . . . . 3

Why is Association Not Cau-
sation? . . . . . . . . . . . . 4

1.4 Main Themes . . . . . . . . . 5

1.1 Simpson’s Paradox

Consider a purely hypothetical futurewhere there is a newdisease known

as COVID-27 that is prevalent in the human population. In this purely

hypothetical future, there are two treatments that have been developed:

treatment A and treatment B. Treatment B is more scarce than treatment

A, so the split of those currently receiving treatment A vs. treatment

B is roughly 73%/27%. You are in charge of choosing which treatment

your country will exclusively use, in a country that only cares about

minimizing loss of life.

You have data on the percentage of people who die from COVID-27,

given the treatment they were assigned and given their condition at the

time treatment was decided. Their condition is a binary variable: either

mild or severe. In this data, 16% of those who receive A die, whereas

19% of those who receive B die. However, when we examine the people

with mild condition separately from the people with severe condition,

the numbers reverse order. In the mild subpopulation, 15% of those who

receive A die, whereas 10% of those who receive B die. In the severe

subpopulation, 30% of those who receive A die, whereas 20% of those

who receive B die. We depict these percentages and the corresponding

counts in Table 1.1.

Condition
Mild Severe Total

Tr
ea
tm
en
t

A

15%

(210/1400)

30%

(30/100)

16%
(240/1500)

B

10%
(5/50)

20%
(100/500)

19%

(105/550)

Table 1.1: Simpson’s paradox in COVID-27

data. The percentages denote themortality

rates in each of the groups. Lower is better.

The numbers in parentheses are the corre-

sponding counts. This apparent paradox

stems from the interpretation that treat-

ment A looks better when examining the

whole population, but treatment B looks

better in all subpopulations.

The apparent paradox stems from the fact that, in Table 1.1, the “Total”

column could be interpreted to mean that we should prefer treatment

A, whereas the “Mild” and “Severe” columns could both be interpreted

to mean that we should prefer treatment B.
1
In fact, the answer is that if

we know someone’s condition, we should give them treatment B, and if

we do not know their condition, we should give them treatment A. Just

kidding... that doesn’t make any sense. So really, what treatment should

you choose for your country?

Either treatment A or treatment B could be the right answer, depending

on the causal structure of the data. In other words, causality is essential to

solve Simpson’s paradox. For now, wewill just give the intuition for when

you should prefer treatment A vs. when you should prefer treatment B,

but it will be made more formal in Chapter 4.
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2 ) refers to the prescription of the treat-

ment, rather than the subsequent recep-

tion of the treatment.

Scenario 1 If the condition � is a cause of the treatment ) (Figure

1.1), treatment B is more effective at reducing mortality .. An example

scenario is where doctors decide to give treatment A to most people

who have mild conditions. And they save the more expensive and more

limited treatment B for people with severe conditions. Because having

severe condition causes one to be more likely to die (� → . in Figure

1.1) and causes one to be more likely to receive treatment B (� → )

in Figure 1.1), treatment B will be associated with higher mortality in

the total population. In other words, treatment B is associated with a

higher mortality rate simply because condition is a common cause of

both treatment and mortality. Here, condition confounds the effect of

treatment on mortality. To correct for this confounding, we must examine

the relationship of ) and . among patients with the same conditions.

This means that the better treatment is the one that yields lower mortality

in each of the subpopulations (the “Mild” and “Severe” columns in Table

1.1): treatment B.

�

) .

Figure 1.1: Causal structure of scenario 1,

where condition � is a common cause of

treatment ) and mortality .. Given this

causal structure, treatment B is preferable.

Scenario 2 If the prescription
2
of treatment) is a cause of the condition

� (Figure 1.2), treatment A is more effective. An example scenario is

where treatment B is so scarce that it requires patients to wait a long

time after they were prescribed the treatment before they can receive

the treatment. Treatment A does not have this problem. Because the

condition of a patient with COVID-27 worsens over time, the prescription

of treatment B actually causes patients with mild conditions to develop

severe conditions, causing a higher mortality rate. Therefore, even if

treatment B is more effective than treatment A once administered (positive
effect along ) → . in Figure 1.2), because prescription of treatment B

causes worse conditions (negative effect along ) → � → . in Figure

1.2), treatment B is less effective in total. Note: Because treatment B is

more expensive, treatment B is prescribed with 0.27 probability, while

treatment A is prescribed with 0.73 probability; importantly, treatment

prescription is independent of condition in this scenario.

) �

.

Figure 1.2: Causal structure of scenario 2,

where treatment ) is a cause of condition

�. Given this causal structure, treatment

A is preferable.

In sum, the more effective treatment is completely dependent on the

causal structure of the problem. In Scenario 1, where � was a cause of

) (Figure 1.1), treatment B was more effective. In Scenario 2, where )

was a cause of � (Figure 1.2), treatment A was more effective. Without

causality, Simpson’s paradox cannot be resolved. With causality, it is not

a paradox at all.

1.2 Applications of Causal Inference

Causal inference is essential to science, as we often want to make causal

claims, rather than merely associational claims. For example, if we

are choosing between treatments for a disease, we want to choose the

treatment that causes the most people to be cured, without causing too

many bad side effects. If we want a reinforcement learning algorithm to

maximize reward, we want it to take actions that cause it to achieve the

maximum reward. If we are studying the effect of social media on mental

health, we are trying to understand what the main causes of a given

mental health outcome are and order these causes by the percentage of

the outcome that can be attributed to each cause.
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[1]: Vigen (2015), Spurious correlations

Causal inference is essential for rigorous decision-making. For example,

say we are considering several different policies to implement to reduce

greenhouse gas emissions, and we must choose just one due to budget

constraints. If we want to be maximally effective, we should carry out

causal analysis to determine which policy will cause the largest reduc-

tion in emissions. As another example, say we are considering several

interventions to reduce global poverty. We want to know which policies

will cause the largest reductions in poverty.

Now that we’ve gone through the general example of Simpson’s paradox

and a few specific examples in science and decision-making, we’ll move

to how causal inference is so different from prediction.

1.3 Correlation Does Not Imply Causation

Many of you will have heard the mantra “correlation does not imply

causation.” In this section, we will quickly review that and provide you

with a bit more intuition about why this is the case.

1.3.1 Nicolas Cage and Pool Drownings

It turns out that the yearly number of people who drown by falling into

swimming pools has a high degree of correlation with the yearly number

of films that Nicolas Cage appears in [1]. See Figure 1.3 for a graph of this

data. Does this mean that Nicolas Cage encourages bad swimmers to

hop in the pool in his films? Or does Nicolas Cage feel more motivated to

act in more films when he sees how many drownings are happening that

year, perhaps to try to prevent more drownings? Or is there some other

explanation? For example, maybe Nicolas Cage is interested in increasing

his popularity among causal inference practitioners, so he travels back in

time to convince his past self to do just the right number of movies for us

to see this correlation, but not too close of a match as that would arouse

suspicion and potentially cause someone to prevent him from rigging

the data this way. We may never know for sure.

N
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Number	of	people	who	drowned	by	falling	into	a	pool
	correlates	with	

Films	Nicolas	Cage	appeared	in

Nicholas	Cage Swimming	pool	drownings
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1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
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Figure 1.3: The yearly number of movies Nicolas Cage appears in correlates with the yearly number of pool drownings [1].

Of course, all of the possible explanations in the preceding paragraph

seem quite unlikely. Rather, it is likely that this is a spurious correlation,
where there is no causal relationship. We’ll soon move on to a more
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illustrative example that will help clarify how spurious correlations can

arise.

1.3.2 Why is Association Not Causation?

Before moving to the next example, let’s be a bit more precise about

terminology. “Correlation” is often colloquially used as a synonym

for statistical dependence. However, “correlation” is technically only a

measure of linear statistical dependence. We will largely be using the

term association to refer to statistical dependence from now on.

Causation is not all or none. For any given amount of association, it

does not need to be “all of the association is causal” or “none of the

association is causal.” Rather, it is possible to have a large amount of

association with only some of it being causal. The phrase “association

is not causation” simply means that the amount of association and the

amount of causation can be different. Some amount of association and

zero causation is a special case of “association is not causation.”

Say you happen upon some data that relates wearing shoes to bed and

waking up with a headache, as one does. It turns out that most times

that someone wears shoes to bed, that person wakes up with a headache.

And most times someone doesn’t wear shoes to bed, that person doesn’t

wake up with a headache. It is not uncommon for people to interpret

data like this (with associations) as meaning that wearing shoes to bed

causes people to wake up with headaches, especially if they are looking

for a reason to justify not wearing shoes to bed. A careful journalist might

make claims like “wearing shoes to bed is associated with headaches”

or “people who wear shoes to bed are at higher risk of waking up with

headaches.” However, the main reason to make claims like that is that

most people will internalize claims like that as “if I wear shoes to bed,

I’ll probably wake up with a headache.”

We can explain how wearing shoes to bed and headaches are associated

without either being a cause of the other. It turns out that they are

both caused by a common cause: drinking the night before. We depict

this in Figure 1.4. You might also hear this kind of variable referred

to as a “confounder” or a “lurking variable.” We will call this kind of

association confounding association since the association is facilitated by a

confounder.

Figure 1.4: Causal structure, where drink-

ing the night before is a common cause of

sleeping with shoes on and of waking up

with a headaches.

The total association observed can be made up of both confounding

association and causal association. It could be the case that wearing shoes

to bed does have some small causal effect on waking up with a headache.

Then, the total association would not be solely confounding association

nor solely causal association. It would be a mixture of both. For example,

in Figure 1.4, causal association flows along the arrow from shoe-sleeping

to waking up with a headache. And confounding association flows along

the path from shoe-sleeping to drinking to headachening (waking up

with a headache). We will make the graphical interpretation of these

different kinds of association clear in Chapter 3.
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The Main Problem The main problem motivating causal inference is

that association is not causation.
3 3

Aswe’ll see in Chapter 5, if we randomly

assign the treatment in a controlled exper-

iment, association actually is causation.

If the two were the same, then causal

inference would be easy. Traditional statistics and machine learning

would already have causal inference solved, as measuring causation

would be as simple as just looking at measures such as correlation and

predictive performance in data. A large portion of this book will be about

better understanding and solving this problem.

1.4 Main Themes

There are several overarching themes that will keep coming up through-

out this book. These themes will largely be comparisons of two different

categories. As you are reading, it is important that you understand which

categories different sections of the book fit into and which categories

they do not fit into.

Statistical vs. Causal Even with an infinite amount of data, we some-

times cannot compute some causal quantities. In contrast, much of

statistics is about addressing uncertainty in finite samples. When given

infinite data, there is no uncertainty. However, association, a statistical

concept, is not causation. There is more work to be done in causal infer-

ence, even after starting with infinite data. This is the main distinction

motivating causal inference. We have already made this distinction in

this chapter and will continue to make this distinction throughout the

book.

Identification vs. Estimation Identification of causal effects is unique

to causal inference. It is the problem that remains to solve, even when we

have infinite data. However, causal inference also shares estimation with

traditional statistics and machine learning. We will largely begin with

identification of causal effects (in Chapters 2, 4 and 6) before moving to

estimation of causal effects (in Chapter 7). The exceptions are Section 2.5

and Section 4.6.2, where we carry out complete examples with estimation

to give you an idea of what the whole process looks like early on.

Interventional vs. Observational If we can intervene/experiment,

identification of causal effects is relatively easy. This is simply because

we can actually take the action that we want to measure the causal effect

of and simply measure the effect after we take that action. Observational

data is where it gets more complicated because confounding is almost

always introduced into the data.

Assumptions There will be a large focus on what assumptions we are

using to get the results that we get. Each assumption will have its own

box to help make it difficult to not notice. Clear assumptions should make

it easy to see where critiques of a given causal analysis or causal model

will be. The hope is that presenting assumptions clearly will lead to more

lucid discussions about causality.
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In this chapter, we will ease into the world of causality. We will see that

new concepts and corresponding notations need to be introduced to

clearly describe causal concepts. These concepts are “new” in the sense

that they may not exist in traditional statistics or math, but they should

be familiar in that we use them in our thinking and describe them with

natural language all the time.

Familiar statistical notation We will use ) to denote the random vari-

able for treatment, . to denote the random variable for the outcome of

interest and - to denote covariates. In general, we will use uppercase

letters to denote random variables (except in maybe one case) and lower-

case letters to denote values that random variables take on. Much of what

we consider will be settings where ) is binary. Know that, in general, we

can extend things to work in settings where ) can take on more than two

values or where ) is continuous.

2.1 Potential Outcomes and Individual
Treatment Effects

We will now introduce the first causal concept to appear in this book.

These concepts are sometimes characterized as being unique to the

Neyman-Rubin [2–4] causal model (or potential outcomes framework),

but they are not. For example, these same concepts are still present

(just under different notation) in the framework that uses causal graphs

(Chapters 3 and 4). It is important that you spend some time ensuring

that you understand these initial causal concepts. If you have not studied

causal inference before, they will be unfamiliar to see in mathematical

contexts, though they may be quite familiar intuitively because we

commonly think and communicate in causal language.

Scenario 1 Consider the scenario where you are unhappy. And you are

considering whether or not to get a dog to help make you happy. If you

become happy after you get the dog, does this mean the dog caused you

to be happy? Well, what if you would have also become happy had you

not gotten the dog? In that case, the dog was not necessary to make you

happy, so its claim to a causal effect on your happiness is weak.

Scenario 2 Let’s switch things up a bit. Consider that you will still be

happy if you get a dog, but now, if you don’t get a dog, you will remain

unhappy. In this scenario, the dog has a pretty strong claim to a causal

effect on your happiness.

In both the above scenarios, we have used the causal concept known as

potential outcomes. Your outcome . is happiness: . = 1 corresponds to

happy while. = 0 corresponds to unhappy. Your treatment ) is whether

or not you get a dog: ) = 1 corresponds to you getting a dog while ) = 0



2 Potential Outcomes 7

1
“Unit” is often used in the place of “indi-

vidual” as the units of the population are

not always people.

2
The ITE is also known as the individual

causal effect, unit-level causal effect, or unit-
level treatment effect.

3
Though, .8(C) can be treated as random.

[3]: Rubin (1974), ‘Estimating causal effects

of treatments in randomized and nonran-

domized studies.’

corresponds to you not getting a dog. We denote by .(1) the potential
outcome of happiness you would observe if you were to get a dog () = 1).

Similarly, we denote by .(0) the potential outcome of happiness you

would observe if you were to not get a dog () = 0). In scenario 1,.(1) = 1

and .(0) = 1. In contrast, in scenario 2, .(1) = 1 and .(0) = 0.

More generally, the potential outcome .(C) denotes what your outcome

would be, if you were to take treatment C. A potential outcome .(C) is
distinct from the observed outcome . in that not all potential outcomes

are observed. Rather all potential outcomes can potentially be observed.
The one that is actually observed depends on the value that the treatment

) takes on.

In the previous scenarios, there was only a single individual in the whole

population: you. However, generally, there are many individuals
1
in

the population of interest. We will denote the treatment, covariates, and

outcome of the 8th individual using )8 , -8 , and .8 . Then, we can define

the individual treatment effect (ITE) 2
for individual 8:

�8 , .8(1) − .8(0) (2.1)

Whenever there is more than one individual in a population,.(C) is a ran-
dom variable because different individuals will have different potential

outcomes. In contrast, .8(C) is usually treated as non-random
3
because

the subscript 8 means that we are conditioning on so much individual-

ized (and context-specific) information, that we restrict our focus to a

single individual (in a specific context) whose potential outcomes are

deterministic.

ITEs are some of the main quantities that we care about in causal

inference. For example, in scenario 2 above, you would choose to get

a dog because the causal effect of getting a dog on your happiness is

positive: .(1) − .(0) = 1 − 0 = 1. In contrast, in scenario 1, you might

choose to not get a dog because there is no causal effect of getting a dog

on your happiness: .(1) − .(0) = 1 − 1 = 0.

Now that we’ve introduced potential outcomes and ITEs, we can intro-

duce the main problems that pop up in causal inference that are not

present in fields where the main focus is on association or prediction.

2.2 The Fundamental Problem of Causal
Inference

It is impossible to observe all potential outcomes for a given individual

[3] . Consider the dog example. You could observe .(1) by getting a dog

and observing your happiness after getting a dog. Alternatively, you

could observe .(0) by not getting a dog and observing your happiness.

However, you cannot observe both .(1) and .(0), unless you have a time

machine that would allow you to go back in time and choose the version

of treatment that you didn’t take the first time. You cannot simply get

a dog, observe .(1), give the dog away, and then observe .(0) because
the second observation will be influenced by all the actions you took

between the two observations and anything else that changed since the

first observation.
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[5]: Holland (1986), ‘Statistics and Causal

Inference’

4
The ATE is also known as the “average

causal effect (ACE).”

This is known as the fundamental problem of causal inference [5]. It is

fundamental because if we cannot observe both .8(1) and .8(0), then we

cannot observe the causal effect .8(1) − .8(0). This problem is unique

to causal inference because, in causal inference, we care about making

causal claims, which are defined in terms of potential outcomes. For

contrast, consider machine learning. In machine learning, we often only

care about predicting the observed outcome ., so there is no need for

potential outcomes, which means machine learning does not have to

deal with this fundamental problem that we must deal with in causal

inference.

The potential outcomes that you do not (and cannot) observe are known

as counterfactuals because they are counter to fact (reality). “Potential

outcomes” are sometimes referred to as “counterfactual outcomes,” but

we will never do that in this book because a potential outcome .(C)
does not become counter to fact until another potential outcome .(C′) is
observed. The potential outcome that is observed is sometimes referred

to as a factual. Note that there are no counterfactuals or factuals until the

outcome is observed. Before that, there are only potential outcomes.

2.3 Getting Around the Fundamental Problem

I suspect this section is where this chapter might start to get a bit unclear.

If that is the case for you, don’t worry too much, and just continue to the

next chapter, as it will build up parallel concepts in a hopefully more

intuitive way.

2.3.1 Average Treatment Effects and Missing Data
Interpretation

We know that we can’t access individual treatment effects, but what

about average treatment effects? We get the average treatment effect (ATE)4
by taking an average over the ITEs:

� , E[.8(1) − .8(0)] = E[.(1) − .(0)] , (2.2)

where the average is over the individuals 8 if.8(C) is deterministic. If.8(C)
is random, the average is also over any other randomness.

Okay, but how would we actually compute the ATE? Let’s look at

some made-up data in Table 2.1 for this. If you like examples, feel free to

substitute in the COVID-27 example from Section 1.1 or the dog-happiness

example from Section 2.1. We will take this table as the whole population

of interest. Because of the fundamental problem of causal inference, this

is fundamentally a missing data problem. All of the question marks in

the table indicate that we do not observe that cell.

A natural quantity that comes to mind is the associational difference:
E[. |) = 1] − E[. |) = 0]. By linearity of expectation, we have that the

ATE E[.(1) −.(0)] = E[.(1)] −E[.(0)]. Then, maybe E[.(1)] −E[.(0)]
equals E[. |) = 1] −E[. |) = 0]. Unfortunately, this is not true in general.

If it were, that would mean that causation is simply association. E[. |) =

1] − E[. |) = 0] is an associational quantity, whereas E[.(1)] − E[.(0)]
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8 ) . .(1) .(0) .(1) − .(0)
1 0 0 ? 0 ?

2 1 1 1 ? ?

3 1 0 0 ? ?

4 0 0 ? 0 ?

5 0 1 ? 1 ?

6 1 1 1 ? ?

Table 2.1: Example data to illustrate that

the fundamental problem of causal infer-

ence can be interpreted as a missing data

problem.

6
Active reading exercise: verify that this

procedure is equivalent to E[. |) = 1] −
E[. |) = 0] in the data in Table 2.1.

-

) .

Figure 2.2: Causal structure when the

treatment assignment mechanism is ig-

norable. Notably, this means there’s no

arrow from - to ), which means there is

no confounding.

is a causal quantity. They are not equal due to confounding, which we

discussed in Section 1.3. The graphical interpretation of this, depicted in

Figure 2.1, is that - confounds the effect of ) on . because there is this

) ← - → . path that non-causal association flows along.

-

) .

Figure 2.1: Causal structure of - con-

founding the effect of ) on ..5

5
Keep reading to Chapter 3, where we

will flesh out and formalize this graphical

interpretation.

2.3.2 Ignorability and Exchangeability

Well, what assumption(s) would make it so that the ATE is simply the

associational difference? This is equivalent to saying “what makes it valid

to calculate the ATE by taking the average of the .(0) column, ignoring

the question marks, and subtracting that from the average of the .(1)
column, ignoring the question marks?”

6
This ignoring of the question

marks (missing data) is known as ignorability. Assuming ignorability is

like ignoring how people ended up selecting the treatment they selected

and just assuming they were randomly assigned their treatment; we

depict this graphically in Figure 2.2 by the lack of a causal arrow from -

to ). We will now state this assumption formally.

Assumption 2.1 (Ignorability / Exchangeability)

(.(1), .(0)) ⊥⊥ )

This assumption is key to causal inference because it allows us to reduce

the ATE to the associational difference:

E[.(1)] − E[.(0)] = E[.(1) | ) = 1] − E[.(0) | ) = 0] (2.3)

= E[. | ) = 1] − E[. | ) = 0] (2.4)

The ignorability assumption is used in Equation 2.3. We will talk more

about Equation 2.4 when we get to Section 2.3.5.

Another perspective on this assumption is that of exchangeability. Ex-
changeability means that the treatment groups are exchangeable in

the sense that if they were swapped, the new treatment group would

observe the same outcomes as the old treatment group, and the new

control group would observe the same outcomes as the old control

group. Formally, this assumption means E[.(1)|) = 0] = E[.(1)|) = 1]
and E[.(0)|) = 1] = E[.(0)|) = 0], respectively. Then, this implies

E[.(1)|) = C] = E[.(1)] and E[.(0)|) = C] = E[.(0)], for all C, which is

nearly equivalent
7

7
Technically, this is mean exchangeabil-

ity, which is a weaker assumption than the

full exchangeability that we describe inAs-

sumption 2.1 because it only constrains the

first moment of the distribution. Generally,

we only needmean ignorability/exchange-

ability for average treatment effects, but it

is common to assume complete indepen-

dence, as in Assumption 2.1.

to Assumption 2.1.

An important intuition to have about exchangeability is that it guarantees

that the treatment groups are comparable. In other words, the treatment

groups are the same in all relevant aspects other than the treatment. This

intuition is what underlies the concept of “controlling for” or “adjusting
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for” variables, which we will discuss shortly when we get to conditional

exchangeability.

We have leveraged Assumption 2.1 to identify causal effects. To identify
a causal effect is to reduce a causal expression to a purely statistical

expression. In this chapter, that means to reduce an expression from

one that uses potential outcome notation to one that uses only statistical

notation such as ), - ,., expectations, and conditioning. This means that

we can calculate the causal effect from just the observational distribution

%(-, ), .).

Definition 2.1 (Identifiability) A causal quantity (e.g. E[.(C)]) is identifi-
able if we can compute it from a purely statistical quantity (e.g. E[. | C]).

We have seen that ignorability is extremely important (Equation 2.3), but

how realistic of an assumption is it? In general, it is completely unrealistic

because there is likely to be confounding in most data we observe (causal

structure shown in Figure 2.1). However, we can make this assumption

realistic by running randomized experiments, which force the treatment

to not be caused by anything but a coin toss, so then we have the causal

structure shown in Figure 2.2. We cover randomized experiments in

greater depth in Chapter 5.

We have covered two prominent perspectives on this main assumption

(2.1): ignorability and exchangeability. Mathematically, these mean the

same thing, but their names correspond to different ways of thinking

about the same assumption. Exchangeability and ignorability are only

two names for this assumption. We will see more aliases after we cover

the more realistic, conditional version of this assumption.

2.3.3 Conditional Exchangeability and
Unconfoundedness

In observational data, it is unrealistic to assume that the treatment groups

are exchangeable. In other words, there is no reason to expect that the

groups are the same in all relevant variables other than the treatment.

However, if we control for relevant variables by conditioning, thenmaybe

the subgroups will be exchangeable. We will clarify what the “relevant

variables” are in Chapter 3, but for now, let’s just say they are all of the

covariates -. Then, we can state conditional exchangeability formally.

Assumption 2.2 (Conditional Exchangeability / Unconfoundedness)

(.(1), .(0)) ⊥⊥ ) | -

The idea is that although the treatment and potential outcomes may

be unconditionally associated (due to confounding), within levels of -,

they are not associated. In other words, there is no confounding within

levels of - because controlling for - has made the treatment groups

comparable. We’ll now give a bit of graphical intuition for the above. We

will not draw the rigorous connection between the graphical intuition

and Assumption 2.2 until Chapter 3; for now, it is just meant to aid

intuition.
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-

) .

Figure 2.3: Causal structure of - con-

founding the effect of ) on .. We depict

the confounding with a red dashed line.

-

) .

Figure 2.4: Illustration of conditioning on

- leading to no confounding.

We do not have exchangeability in the data because - is a common cause

of ) and .. We illustrate this in Figure 2.3. Because - is a common

cause of ) and ., there is non-causal association between ) and .. This

non-causal association flows along the ) ← - → . path; we depict this

with a red dashed arc.

However, we do have conditional exchangeability in the data. This is

because, when we condition on -, there is no longer any non-causal

association between) and.. The non-causal association is now “blocked”

at - by conditioning on -. We illustrate this blocking in Figure 2.4 by

shading - to indicate it is conditioned on and by showing the red dashed

arc being blocked there.

Conditional exchangeability is the main assumption necessary for causal

inference. Armed with this assumption, we can identify the causal effect

within levels of- , just likewe didwith (unconditional) exchangeability:

E[.(1) − .(0) | -] = E[.(1) | -] − E[.(0) | -] (2.5)

= E[.(1) | ) = 1, -] − E[.(0) | ) = 0, -] (2.6)

= E[. | ) = 1, -] − E[. | ) = 0, -] (2.7)

In parallel to before, we get Equation 2.5 by linearity of expectation.

And we now get Equation 2.6 by conditional exchangeability. If we want

the marginal effect that we had before when assuming (unconditional)

exchangeability, we can get that by simply marginalizing out -:

E[.(1) − .(0)] = E-E[.(1) − .(0) | -] (2.8)

= E- [E[. | ) = 1, -] − E[. | ) = 0, -]] (2.9)

This marks an important result for causal inference, so we’ll give it its

own proposition box. The proof we give above leaves out some details.

Read through to Section 2.3.6 (where we redo the proof with all details

specified) to get the rest of the details.Wewill call this result the adjustment
formula.

Theorem 2.1 (Adjustment Formula) Given the assumptions of uncon-
foundedness, positivity, consistency, and no interference, we can identify the
average treatment effect:

E[.(1) − .(0)] = E- [E[. | ) = 1, -] − E[. | ) = 0, -]]

Conditional exchangeability (Assumption 2.2) is a core assumption for

causal inference and goes by many names. For example, the following

are reasonably commonly used to refer to the same assumption: un-

confoundedness, conditional ignorability, no unobserved confounding,

selection on observables, no omitted variable bias, etc. We will use the

name “unconfoundedness” a fair amount throughout this book.

The main reason for moving from exchangeability (Assumption 2.1) to

conditional exchangeability (Assumption 2.2) was that it seemed like a

more realistic assumption. However, we often cannot know for certain

if conditional exchangeability holds. There may be some unobserved

confounders that are not part of - , meaning conditional exchangeability

is violated. Fortunately, that is not a problem in randomized experiments
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8
As we will see in Chapters 3 and 4, it is

not necessarily true that conditioning on

more covariates always helps our causal

estimates be less biased.

(Chapter 5). Unfortunately, it is something that we must always be

conscious of in observational data. Intuitively, the best thing we can do is

to observe and fit as many covariates into - as possible to try to ensure

unconfoundedness.
8

2.3.4 Positivity/Overlap and Extrapolation

While conditioning on many covariates is attractive for achieving uncon-

foundedness, it can actually be detrimental for another reason that has

to do with another important assumption that we have yet to discuss:

positivity. We will get to why at the end of this section. Positivity is the

condition that all subgroups of the data with different covariates have

some probability of receiving any value of treatment. Formally, we define

positivity for binary treatment as follows.

Assumption 2.3 (Positivity / Overlap / Common Support) For all
values of covariates G present in the population of interest (i.e. G such that
%(- = G) > 0),

0 < %() = 1 | - = G) < 1

To seewhypositivity is important, let’s take a closer look at Equation 2.9:

E[.(1) − .(0)] = E- [E[. | ) = 1, -] − E[. | ) = 0, -]]
(2.9 revisited)

In short, if we have a positivity violation, then we will be conditioning

on a zero probability event. This is because there will be some value

of G with non-zero probability for which %() = 1 | - = G) = 0 or

%() = 0 | - = G) = 0. This means that for some value of G that we

are marginalizing out in the above equation, %() = 1, - = G) = 0 or

%() = 0, - = G) = 0, and these are the two events that we condition on

in Equation 2.9.

To clearly see how a positivity violation translates to division by zero,

let’s rewrite the right-hand side of Equation 2.9. For discrete covariates

and outcome, it can be rewritten as follows:∑
G

%(- = G)
(∑
H

H %(. = H | ) = 1, - = G) −
∑
H

H %(. = H | ) = 0, - = G)
)

(2.10)

Then, applying Bayes’ rule, this can be further rewritten:

∑
G

%(- = G)
(∑
H

H
%(. = H, ) = 1, - = G)
%() = 1 | - = G)%(- = G) −

∑
H

H
%(. = H, ) = 0, - = G)
%() = 0 | - = G)%(- = G)

)
(2.11)

In Equation 2.11, we can clearly see why positivity is essential. If

%() = 1 | - = G) = 0 for any level of covariates G with non-zero prob-

ability, then there is division by zero in the first term in the equation,

so E-E[. | ) = 1, -] is undefined. Similarly, if %() = 1 | - = G) = 1

for any level of G, then %() = 0 | - = G) = 0, so there is division by

zero in the second term and E-E[. | ) = 0, -] is undefined. With

either of these violations of the positivity assumption, the causal effect is

undefined.
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[6]: D’Amour et al. (2017), Overlap in Ob-
servational Studies with High-Dimensional
Covariates

12
An “estimator” is a function that takes

a dataset as input and outputs an esti-

mate. We discuss this statistics terminol-

ogy more in Section 2.4.

Intuition That’s the math for why we need the positivity assumption,

but what’s the intuition? Well, if we have a positivity violation, that

means that within some subgroup of the data, everyone always receives

treatment or everyone always receives the control. It wouldn’t make

sense to be able to estimate a causal effect of treatment vs. control in that

subgroup since we see only treatment or only control. We never see the

alternative in that subgroup.

Another name for positivity is overlap. The intuition for this name is that

we want the covariate distribution of the treatment group to overlap

with the covariate distribution of the control group. More specifically,

we want %(- | ) = 1)9

9
Whenever we use a random variable (de-

noted by a capital letter) as the argument

for %, we are referring to the whole dis-

tribution, rather than just the scalar that

something like %(G | ) = 1) refers to.
to have the same support as %(- | ) = 0).10

10
Active reading exercise: convince your-

self that this formulation of overlap/posi-

tivity is equivalent to the formulation in

Assumption 2.3.

This

is why another common alias for positivity is common support.

The Positivity-Unconfoundedness Tradeoff Although conditioning

on more covariates could lead to a higher chance of satisfying uncon-

foundedness, it can lead to a higher chance of violating positivity. As we

increase the dimension of the covariates, we make the subgroups for any

level G of the covariates smaller.
11

11
This is related to the curse of dimensional-

ity.

As each subgroup gets smaller, there

is a higher and higher chance that either the whole subgroup will have

treatment or the whole subgroup will have control. For example, once

the size of any subgroup has decreased to one, positivity is guaranteed to

not hold. See [6] for a rigorous argument of high-dimensional covariates

leading to positivity violations.

Extrapolation Violations of the positivity assumption can actually lead

to demanding too much from models and getting very bad behavior in

return. Many causal effect estimators
12
fit a model to E[. |C , G] using the

(C , G, H) tuples as data. The inputs to these models are (C , G) pairs and the

outputs are the corresponding outcomes. These models will be forced

to extrapolate in regions (using their parametric assumptions) where

%() = 1, - = G) = 0 and regions where %() = 0, - = G) = 0 when

they are used in the adjustment formula (Theorem 2.1) in place of the

corresponding conditional expectations.

2.3.5 No interference, Consistency, and SUTVA

There are a few additional assumptionswe’ve been smuggling in through-

out this chapter. We will specify all the rest of these assumptions in this

section. The first assumption in this section is that of no interference.
No interference means that my outcome is unaffected by anyone else’s

treatment. Rather, my outcome is only a function of my own treatment.

We’ve been using this assumption implicitly throughout this chapter.

We’ll now formalize it.

Assumption 2.4 (No Interference)

.8(C1 , . . . , C8−1 , C8 , C8+1 , . . . , C=) = .8(C8)

Of course, this assumption could be violated. For example, if the treatment

is “get a dog” and the outcome is my happiness, it could easily be that my

happiness is influenced by whether or not my friends get dogs because

we could end up hanging outmore to have our dogs play together. As you
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[7]: Hernán and Robins (2020), Causal In-
ference: What If

13
Active reading exercise: convince your-

self that SUTVA is a combination of con-

sistency and no inference

might expect, violations of the no interference assumption are rampant

in network data.

The last assumption is consistency. Consistency is the assumption that

the outcome we observe . is actually the potential outcome under the

observed treatment ).

Assumption 2.5 (Consistency) If the treatment is ), then the observed
outcome . is the potential outcome under treatment ). Formally,

) = C =⇒ . = .(C) (2.12)

We could write this equivalently as follow:

. = .()) (2.13)

Note that ) is different from C, and .()) is different from .(C). ) is a

random variable that corresponds to the observed treatment, whereas C

is a specific value of treatment. Similarly,.(C) is the potential outcome for

some specific value of treatment, whereas .()) is the potential outcome

for the actual value of treatment that we observe.

When we were using exchangeability to prove identifiability, we actually

assumed consistency in Equation 2.4 to get the follow equality:

E[.(1) | ) = 1] − E[.(0) | ) = 0] = E[. | ) = 1] − E[. | ) = 0]

Similarly, when we were using conditional exchangeability to prove

identifiability, we assumed consistency in Equation 2.7.

It might seem like consistency is obviously true, but that is not always the

case. For example, if the treatment specification is simply “get a dog” or

“don’t get a dog,” this can be too coarse to yield consistency. It might be

that if I were to get a puppy, I would observe . = 1 (happiness) because

I needed an energetic friend, but if I were to get an old, low-energy dog, I

would observe . = 0 (unhappiness). However, both of these treatments

fall under the category of “get a dog,” so both correspond to ) = 1. This

means that .(1) is not well defined, since it will be 1 or 0, depending

on something that is not captured by the treatment specification. In

this sense, consistency encompasses the assumption that is sometimes

referred to as “no multiple versions of treatment.” See Sections 3.4 and

3.5 of Hernán and Robins [7] and references therein for more discussion

on this topic.

SUTVA You will also commonly see the stable unit-treatment value
assumption (SUTVA) in the literature. SUTVA is satisfied if unit (individual)

8’s outcome is simply a function of unit 8’s treatment. Therefore, SUTVA is

a combination of consistency and no interference (and also deterministic

potential outcomes).
13

2.3.6 Tying It All Together

We introduced unconfoundedness (conditional exchangeability) first

because it is the main causal assumption. However, all of the assumptions

are necessary:
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14
As we will see in Chapter 4, we will

equivalently refer to a causal estimand as

any estimand that contains a do-operator,
and we will refer to a statistical estimand

as any estimand that does not contain a

do-operator.

1. Unconfoundedness (Assumption 2.2)

2. Positivity (Assumption 2.3)

3. No interference (Assumption 2.4)

4. Consistency (Assumption 2.5)

We’ll now review the proof of the adjustment formula (Theorem 2.1)

that was done in Equation 2.5 through Equation 2.9 and list which

assumptions are used for each step. Even before we get to these equations,

we use the no interference assumption to justify that the quantity we

should be looking at for causal inference is E[.(1) − .(0)], rather than
something more complex like the left-hand side of Assumption 2.4. In

the proof below, the first two equalities follow from mathematical facts,

whereas the last two follow from these key assumptions.

Proof of Theorem 2.1.

E[.(1) − .(0)] = E[.(1)] − E[.(0)] (linearity of expectation)

= E- [E[.(1) | -] − E[.(0) | -]]
(law of iterated expectations)

= E- [E[.(1) | ) = 1, -] − E[.(0) | ) = 0, -]]
(unconfoundedness and positivity)

= E- [E[. | ) = 1, -] − E[. | ) = 0, -]]
(consistency)

That’s how all of these assumptions tie together to give us identifiability

of the ATE.We’ll soon see how to use this result to get an actual estimated

number for the ATE.

2.4 Fancy Statistics Terminology Defancified

Before we start computing concrete numbers for the ATE, we must

quickly introduce some terminology from statistics that will help clarify

the discussion. An estimand is the quantity that we want to estimate. For

example,E- [E[. | ) = 1, -] − E[. | ) = 0, -]] is the estimandwe care

about for estimating the ATE. An estimate (noun) is an approximation of

some estimand, which we get using data. We will see concrete numbers

in the next section; these are estimates. Given some estimand , we write

an estimate of that estimand by simply putting a hat on it: ̂. And an

estimator is a function that maps a dataset to an estimate of the estimand.

The process that we will use to go from data + estimand to a concrete

number is known as estimation. To estimate (verb) is to feed data into an

estimator to get an estimate.

In this book, we will use even more specific language that allows us to

make the distinction between causal quantities and statistical quantities.

We will use the phrase causal estimand to refer to any estimand that

contains a potential outcome in it. We will use the phrase statistical
estimand to denote the complement: any estimand that does not contain

a potential outcome.
14

For an example, recall the adjustment formula
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15
Active reading exercise:Why can’twe di-

rectly estimate a causal estimand without

first translating it to a statistical estimand?

[8]: Luque-Fernandez et al. (2018), ‘Edu-

cational Note: Paradoxical collider effect

in the analysis of non-communicable dis-

ease epidemiological data: a reproducible

illustration and web application’

[9]: Virani et al. (2020), ‘Heart Disease and

Stroke Statistics—2020 Update: A Report

From the American Heart Association’

16
Aswewill see, this binarization is purely

pedagogical and does not reflect any limi-

tations of adjusting for confounders.

(Theorem 2.1):

E[.(1) − .(0)] = E- [E[. | ) = 1, -] − E[. | ) = 0, -]] (2.14)

E[.(1) − .(0)] is the causal estimand that we are interested in. In order

to actually estimate this causal estimand, we must translate it into a

statistical estimand: E- [E[. | ) = 1, -] − E[. | ) = 0, -]].15

When we say “identification” in this book, we are referring to the process

of moving from a causal estimand to an equivalent statistical estimand.

Whenwe say “estimation,” we are referring to the process ofmoving from

a statistical estimand to an estimate. We illustrate this in the flowchart in

Figure 2.5.

Causal Estimand Statistical Estimand Estimate

Identification Estimation

Figure 2.5: The Identification-Estimation Flowchart – a flowchart that illustrates the process of moving from a target causal estimand to a

corresponding estimate, through identification and estimation.

What do we do when we go to actually estimate quantities such as

E- [E[. | ) = 1, -] − E[. | ) = 0, -]]? We will often use a model (e.g.

linear regression or some more fancy predictor from machine learning)

in place of the conditional expectations E[. | ) = C , - = G]. We will

refer to estimators that use models like this as model-assisted estimators.
Now that we’ve gotten some of this terminology out of the way, we can

proceed to an example of estimating the ATE.

2.5 A Complete Example with Estimation

Theorem 2.1 and the corresponding recent copy in Equation 2.14 give

us identification. However, we haven’t discussed estimation at all. In

this section, we will give a short example complete with estimation. We

will cover the topic of estimation of causal effects more completely in

Chapter 7.

We use Luque-Fernandez et al. [8]’s example from epidemiology. The

outcome . of interest is (systolic) blood pressure. This is an important

outcome because roughly 46% of Americans have high blood pressure,

and high blood pressure is associated with increased risk of mortality

[9]. The “treatment” ) of interest is sodium intake. Sodium intake is

a continuous variable; in order to easily apply Equation 2.14, which is

specified for binary treatment, we will binarize ) by letting ) = 1 denote

daily sodium intake above 3.5 grams and letting ) = 0 denote daily

sodium intake below 3.5 grams.
16
We will be estimating the causal effect

of sodium intake on blood pressure. In our data, we also have the age

of the individuals and amount of protein in their urine as covariates -.

Luque-Fernandez et al. [8] run a simulation, taking care to be sure that

the range of values is “biologically plausible and as close to reality as

possible.”

Because we are using data from a simulation, we know that the true ATE

of sodium on blood pressure is 1.05. More concretely, the line of code

that generates blood pressure . looks as follows:

1 blood_pressure = 1.05 * sodium + ...
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[10]: Hastie et al. (2001), The Elements of
Statistical Learning

17
Active reading exercise: This

naive version is equivalent to just

taking the associational difference:

E[. | ) = 1] − E[. | ) = 0]. Why?

Now, how do we actually estimate the ATE? First, we assume consistency,

positivity, and unconfoundedness given -. As we recently recalled in

Equation 2.14, this means that we’ve identified the ATE as

E- [E[. | ) = 1, -] − E[. | ) = 0, -]] .

We then take that outer expectation over - and replace it with an

empirical mean over the data, giving us the following:

1

=

∑
8

[E[. | ) = 1, - = G8] − E[. | ) = 0, - = G8]] (2.15)

To complete our estimator, we then fit some machine learning model to

the conditional expectation E[. | C , G]. Minimizing the mean-squared

error (MSE) of predicting . from (), -) pairs is equivalent to modeling

this conditional expectation [see, e.g., 10, Section 2.4]. Therefore, we can

plug in any machine learning model for E[. | C , G], which gives us a

model-assisted estimator. We’ll use linear regression here, which works

out nicely since blood pressure is generated as a linear combination of

other variables, in this simulation. We give Python code for this below,

where our data are in a Pandas DataFrame called df. We fit the model

for E[. | C , G] in line 8, and we take the empirical mean over - in lines

10-14.

Listing 2.1: Python code for estimating

the ATE

1 import numpy as np

2 import pandas as pd

3 from sklearn.linear_model import LinearRegression

4

5 Xt = df[['sodium', 'age', 'proteinuria']]

6 y = df['blood_pressure']

7 model = LinearRegression()

8 model.fit(Xt, y)

9

10 Xt1 = pd.DataFrame.copy(Xt)

11 Xt1['sodium'] = 1

12 Xt0 = pd.DataFrame.copy(Xt)

13 Xt0['sodium'] = 0

14 ate_est = np.mean(model.predict(Xt1) - model.predict(Xt0))

15 print('ATE estimate:', ate_est)

Full code, complete with simulation,

is available at https://github.com/

bradyneal/causal-book-code/blob/

master/sodium_example.py.

This yields an ATE estimate of 0.85. If we were to naively regress .

on only ), which corresponds to replacing line 5 in Listing 2.1 with

Xt = df[['sodium']],17 we would get an ATE estimate of 5.33. That’s a

|5.33−1.05|
1.05

× 100% = 407% error! In contrast, when we control for - (as in

Listing 2.1), our percent error is only
|.85−1.05|

1.05
× 100% = 19%.

All of the above is done using the adjustment formulawithmodel-assisted

estimation, where we first fit a model for the conditional expectation

E[. | C , G], and then we take an empirical mean over - , using that model.

However, because we are using a linear model, this is equivalent to just

taking the coefficient in front of ) in the linear regression as the ATE

estimate. This is what we do in the following code (which gives the exact

same ATE estimate):

Listing 2.2: Python code for estimating

the ATE using the coefficient of linear re-

gression

1 Xt = df[['sodium', 'age', 'proteinuria']]

2 y = df['blood_pressure']

3 model = LinearRegression()

https://github.com/bradyneal/causal-book-code/blob/master/sodium_example.py
https://github.com/bradyneal/causal-book-code/blob/master/sodium_example.py
https://github.com/bradyneal/causal-book-code/blob/master/sodium_example.py
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18
Concisely summarizing nonlinear func-

tions E[.(C)] is an open problem. See, e.g.,

Janzing et al. [11]

[11]: Janzing et al. (2013), ‘Quantifying

causal influences’

.

19
By “misspecified,” we mean that the

functional form of the model does not

match the functional form of the data gen-

erating process.

[12]: Morgan and Winship (2014), Counter-
factuals and Causal Inference: Methods and
Principles for Social Research

4 model.fit(Xt, y)

5 ate_est = model.coef_[0]

6 print('ATE estimate:', ate_est)

Continuous Treatment What if we allow the treatment, daily sodium

intake, to remain continuous, instead of binarizing it? The cool thing

about just taking the regression coefficient as the ATE estimate is that

it doesn’t require taking a difference between two values of treatment

(e.g. ) = 1 and ) = 0), so it trivially generalizes to when ) is continuous.

When ) is continous, we care about how E[.(C)] changes with C. Since

we are assuming E[.(C)] is linear, this change is completely captured

by
3
3CE[.(C)].18 When E[.(C)] is linear, it turns out that this quantity

is exactly what taking the coefficient from linear regression estimates.

Seemingly magically, we have compressed all of E[.(C)] = E[. | C],
which is a function of C, into a single value.

However, this effortless compression of all of E[. | C] for continuous C
comes as a cost: the linear parametric formwe assumed. If thismodelwere

misspecified,
19
our ATE estimate would be biased. And because linear

models are so simple, they will likely be misspecified. For example, the

following assumption is implicit in assuming that a linear model is well-

specified: the treatment effect is the same for all individuals. See Morgan

and Winship [12, Sections 6.2 and 6.3] for a more complete critique of

using the coefficient in front of treatment as the ATE estimate.
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We’ve been using causal graphs in the previous chapters to aid intuition.

In this chapter, we will introduce the formalisms that underlie this

intuition. Hopefully, we have sufficiently motivated this chapter and

made the utility of graphical models clear with all of the graphical

interpretations of concepts in previous chapters.

3.1 Graph Terminology

In this section, we will use the terminology machine gun (see Figure 3.1). To

be able to use nice convenient graph language in the following sections,

rapid-firing a lot of graph terminology is a necessary evil, unfortunately.

term

term
term

term

term

term

term

term

Figure 3.1: Terminology machine gun

The term “graph” is often used to describe a variety of visualizations.

For example, “graph” might refer to a visualization of a single variable

function 5 (G), where G is plotted on the G-axis and 5 (G) is plotted

on the H-axis. Or “bar graph” might be used as a synonym for a bar

chart. However, in graph theory, the term “graph” refers to a specific

mathematical object.

A graph is a collection of nodes (also called “vertices”) and edges that
connect the nodes. For example, in Figure 3.2, �, �, and � are the nodes

of the graph, and the lines connecting them are the edges. Figure 3.2 is

called an undirected graph because the edges do not have any direction. In

contrast, Figure 3.3 is a directed graph. A directed graph’s edges go out

of a parent node and into a child node, with the arrows signifying which

direction the edges are going. We will denote the parents of a node -

with pa(-). We’ll use an even simpler shorthand when the nodes are

ordered so that we can denote the 8th node by -8 ; in that case, we will

also denote the parents of -8 by pa8 . Two nodes are said to be adjacent
if they are connected by an edge. For example, in both Figure 3.2 and

Figure 3.3, � and � are adjacent, but � and � are not.

� �

� �

Figure 3.2: Undirected graph

A path in a graph is any sequence of adjacent nodes, regardless of the

direction of the edges that join them. For example, �— � — � is a path

in Figure 3.2, and �→ � ← � is a path in Figure 3.3. A directed path is
a path that consists of directed edges that are all directed in the same

direction (no two edges along the path both point into or both point

out of the same node). For example, �→ � → � is a directed path in

Figure 3.3, but �→ � ← � and � ← �→ � are not.

� �

� �

Figure 3.4: Directed graph with cycle

If there is a directed path that starts at node - and ends at node., then -

is an ancestor of., and. is a descendant of - . We will denote descendants

of - by de(-). For example, in Figure 3.3, � is an ancestor of � and

�, and � and � are both descendants of � (de(�)). If - is an ancestor

of itself, then some funky time travel has taken place. In seriousness, a

directed path from some node - back to itself is known as a cycle (see
Figure 3.4). If there are no cycles in a directed graph, the graph is known



3 The Flow of Association and Causation in Graphs 20

� �

� �

Figure 3.5: Directed graph with immoral-

ity

as a directed acyclic graph (DAG). The graphs we focus on in this book will

mostly be DAGs.

If twoparents- and. share some child/, but there is no edge connecting

- and ., then - → /← . is known as an immorality. Seriously; that’s
a real term in graphical models. For example, if we remove the �→ �

from Figure 3.3 to get Figure 3.5, then �→ � ← � is an immorality.

3.2 Bayesian Networks

It turns out that much of the work for causal graphical models was done

in the field of probabilistic graphical models. Probabilistic graphical

models are statistical models while causal graphical models are causal

models. Bayesian networks are the main probabilistic graphical model

that causal graphical models (causal Bayesian networks) inherit most of

their properties from.

Imagine that we only cared about modeling association, without any

causalmodeling.Wewouldwant tomodel thedatadistribution%(G1 , G2 , . . . , G=).
In general, we can use the chain rule of probability to factorize any distri-

bution:

%(G1 , G2 , . . . , G=) = %(G1)
∏
8

%(G8 | G8−1 , . . . , G1) (3.1)

However, if we were to model these factors with tables, it would take an

exponential number of parameters. To see this, take each G8 to be binary

and consider how we would model the factor %(G= | G=−1 , . . . , G1). Since
G= is binary, we only need to model %(-= = 1 | G=−1 , . . . , G1) because
%(-= = 0 | G=−1 , . . . , G1) is simply 1− %(-= = 1 | G=−1 , . . . , G1). Well, we

would need 2
=−1

parameters to model this. As a specific example, let

= = 4. As we can see in Table 3.1, this would require 2
4−1 = 8 parameters:

1 , . . . , 8. This brute-force parametrization quickly becomes intractable

as = increases.

Table 3.1: Table required to model the

single factor %(G= | G=−1 , . . . , G1) where

= = 4 and the variables are binary. The

number of parameters to necessary is ex-

ponential in =.

G1 G2 G3 %(G4 | G3 , G2 , G1)
0 0 0 1

0 0 1 2

0 1 0 3

0 1 1 4

1 0 0 5

1 0 1 6

1 1 0 7

1 1 1 8

An intuitive way to more efficiently model many variables together in

a joint distribution is to only model local dependencies. For example,

rather than modeling the -4 factor as %(G4 |G3 , G2 , G1), we could model

it as %(G4 |G3) if we have reason to believe that -4 only locally depends

on -3. In fact, in the corresponding graph in Figure 3.6, the only node

that feeds into -4 is -3. This is meant to signify that -4 only locally

depends on -3. Whenever we use a graph � in relation to a probability

distribution %, there will always be a one-to-one mapping between the

nodes in � and the random variables in %, so when we talk about nodes

being independent, we mean the corresponding random variables are

independent.

-1 -2

-3 -4

Figure 3.6: Four node DAG where -4 lo-

cally depends on only -3.

Given a probability distribution and a corresponding directed acyclic

graph (DAG), we can formalize the specification of independencies with

the local Markov assumption:

Assumption 3.1 (Local Markov Assumption) Given its parents in the
DAG, a node - is independent of all its non-descendants.
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1
A probability distribution is said to be

(locally) Markov with respect to a DAG if

they satisfy the local Markov assumption.

[13]: Koller and Friedman (2009), Proba-
bilistic Graphical Models: Principles and Tech-
niques

This assumption (along with specific DAGs) gives us a lot. We will

demonstrate this in the next few equations. In our four variable example,

the chain rule of probability tells us that we can factorize any % such that

%(G1 , G2 , G3 , G4) = %(G1)%(G2 | G1)%(G3 | G2 , G1)%(G4 | G3 , G2 , G1) .
(3.2)

If % is Markov with respect to the graph
1
in Figure 3.6, then we can

simplify the last factor:

%(G1 , G2 , G3 , G4) = %(G1)%(G2 | G1)%(G3 | G2 , G1)%(G4 | G3) . (3.3)

If we further remove edges, removing -1 → -2 and -2 → -3 as in

Figure 3.7, we can further simplify the factorization of %:

%(G1 , G2 , G3 , G4) = %(G1)%(G2)%(G3 | G1)%(G4 | G3) . (3.4)

-1 -2

-3 -4

Figure 3.7: Four node DAG with even

more independencies.

With the understanding that we have hopefully built up from a few

examples,
2

2
Active reading exercise:: ensure that you

know how we get from Equation 3.2 to

Equation 3.3 and to Equation 3.4 using the

local Markov assumption.

we will now state one of the main consequences of the local

Markov assumption:

Definition 3.1 (Bayesian Network Factorization) Given a probability
distribution % and a DAG �, % factorizes according to � if

%(G1 , . . . , G=) =
∏
8

%(G8 | pa8)

Hopefully you see the resemblance between the move from Equation 3.2

to Equation 3.3 or the move to Equation 3.4 and the generalization of this

that is presented in Definition 3.1.

The Bayesian network factorization is also known as the chain rule for
Bayesian networks or Markov compatibility. For example, if % factorizes

according to �, then % and � are Markov compatible.

We have given the intuition of how the local Markov assumption implies

the Bayesian network factorization, and it turns out that the two are

actually equivalent. In other words, we could have started with the

Bayesian network factorization as the main assumption (and labeled it as

an assumption) and shown that it implies the local Markov assumption.

See Koller and Friedman [13, Chapter 3] for these proofs and more

information on this topic.

As important as the local Markov assumption is, it only gives us infor-

mation about the independencies in % that a DAG implies. It does not

even tell us that if - and . are adjacent in the DAG, then - and . are

dependent. And this additional information is very commonly assumed

in causal DAGs. To get this guaranteed dependence between adjacent

nodes, we will generally assume a slightly stronger assumption than the

local Markov assumption: minimality.

Assumption 3.2 (Minimality Assumption) 1. Given its parents in
the DAG, a node - is independent of all its non-descendants (Assump-
tion 3.1).

2. Adjacent nodes in the DAG are dependent.3

3
This is often equivalently stated in the

following way: if we were to remove any

edges from the DAG, % would not be

Markov with respect to the graph with

the removed edges [see, e.g., 14, Section

6.5.3]

[14]: Peters et al. (2017), Elements of Causal
Inference: Foundations and Learning Algo-
rithms

.



3 The Flow of Association and Causation in Graphs 22

4
Active reading exercise: why is removing

edges in a Bayesian network equivalent to

adding independencies?

To see why this assumption is named “minimality” consider, what we

knowwhenwe know that % is Markovwith respect to a DAG�. We know

that % satisfies a set of independencies that are specific to the structure of

�. If % and � also satisfy minimality, then this set of independencies is

minimal in the sense the % does not satisfy any additional independencies.

This is equivalent to saying that adjacent nodes are dependent.

For example, if the DAG were simply two connected nodes - and . as

in Figure 3.8, the local Markov assumption would tell us that we can

factorize %(G, H) as %(G)%(H |G), but it would also allow us to factorize

%(G, H) as %(G)%(H), meaning it allows distributions where - and . are

independent. In contrast, the minimality assumption does not allow this

additional independence. Minimality would tell us to factorize %(G, H)
as %(G)%(H |G), and it would tell us that no additional independencies

(- ⊥⊥ .) exist in % that are minimal with respect to Figure 3.8.

- .

Figure 3.8: Two connected nodes

Because removing edges in a Bayesian network is equivalent to adding

independencies,
4
the minimality assumption is equivalent to saying that

we can’t remove any more edges from the graph. In a sense, every edge is

“active.” More concretely, consider that % and � are Markov compatible

and that �′ is what we get when we remove some edge from �. If % is

also Markov with respect to �′, then % is not minimal with respect to

�.

Armed with the minimality assumption and what it implies about how

distributions factorize when they are Markov with respect to some DAG

(Definition 3.1), we are now ready to discuss the flow of association in

DAGs. However, because everything in this section is purely statistical,

we are not ready to discuss the flow of causation in DAGs. To do that, we

must make causal assumptions. Pedagogically, this will also allow us to

use intuitive causal language when we explain the flow of association.

3.3 Causal Graphs

The previous section was all about statistical models and modeling

association. In this section, we will augment these models with causal

assumptions, turning them into causal models and allowing us to study

causation. In order to introduce causal assumptions, we must first have

an understanding of what it means for - to be a cause of ..

Definition 3.2 (What is a cause?) A variable - is said to be a cause of a
variable . if . can change in response to changes in -.5 5

See Section 4.5.1 for a definition using

mathematical notation.

Another phrase commonly used to describe this primitive is that .

“listens” to - . With this, we can now specify the main causal assumption

that we will use throughout this book.

Assumption 3.3 ((Strict) Causal Edges Assumption) In a directed graph,
every parent is a direct cause of all its children.

Here, the set of direct causes of . is everything that . directly responds

to; if we fix all of the direct causes of ., then changing any other cause of

. won’t induce any changes in .. This assumption is “strict” in the sense
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that every edge is “active,” just like in DAGs that satisfy minimality. In

other words, because the definition of a cause (Definition 3.2) implies

that a cause and its effect are dependent and because we are assuming

all parents are causes of their children, we are assuming that parents

and their children are dependent. So the second part of minimality

(Assumption 3.2) is baked into the strict causal edges assumption.

In contrast, the non-strict causal edges assumption would allow for

some parents to not be causes of their children. It would just assume

that children are not causes of their parents. This allows us to draw

graphs with extra edges to make fewer assumptions, just like we would

in Bayesian networks, where more edges means fewer independence

assumptions. Causal graphs are sometimes drawn with this kind of

non-minimal meaning, but the vast majority of the time, when someone

draws a causal graph, they mean that parents are causes of their children.

Therefore, unless we specify otherwise, throughout this book, we will

use “causal graph” to refer to a DAG that satisfies the strict causal edges

assumption. And we will often omit the word “strict” when we refer to

this assumption.

When we add the causal edges assumption, directed paths in the DAG

take on a very special meaning; they correspond to causation. This is in

contrast to other paths in the graph, which association may flow along,

but causation certainly may not. This will become more clear when we

go into detail on these other kinds of paths in Sections 3.5 and 3.6.

Moving forward, we will now think of the edges of graphs as causal, in

order to describe concepts intuitively with causal language. However,

all of the associational claims about statistical independence will still

hold, even when the edges do not have causal meaning like in the vanilla

Bayesian networks of Section 3.2.

As we will see in the next few sections, the main assumptions that we

need for our causal graphical models to tell us how association and

causation flow between variables are the following two:

1. Local Markov Assumption (Assumption 3.1)

2. Causal Edges Assumption (Assumption 3.3)

We will discuss these assumptions throughout the next few sections and

come back to discuss them more fully again in Section 3.8 after we’ve

established the necessary preliminaries.

3.4 Two-Node Graphs and Graphical Building
Blocks

Now that we’ve gotten the basic assumptions and definitions out of the

way, we can get to the core of this chapter: the flow of association and

causation in DAGs. We can understand this flow in general DAGs by

understanding the flow in the minimal building blocks of graphs. These

minimal building blocks consist of chains (Figure 3.9a), forks (Figure 3.9b),

immoralities (Figure 3.9c), two unconnected nodes (Figure 3.10), and two

connected nodes (Figure 3.11).
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-1 -2 -3

(a) Chain

-2

-1 -3

(b) Fork

-1

-2

-3

(c) Immorality

Figure 3.9: Basic graph building blocks

-1 -2

Figure 3.11: Two connected nodes

6
Two adjacent nodes in a non-strict causal

graph can be unassociated.

-1 -2 -3

Figure 3.12:Chainwithflowof association

drawn as a dashed red arc.

By “flow of association,” we mean whether any two nodes in a graph are

associated or not associated. Another way of saying this is whether two

nodes are (statistically) dependent or (statistically) independent. Addi-

tionally, we will study whether two nodes are conditionally independent

or not.

For each building block, we will give the intuition for why two nodes

are (conditionally) independent or not, and we will give a proof as well.

We can prove that two nodes � and � are conditionally independent

given some set of nodes � by simply showing that %(0, 1 |2) factorizes
as %(0 |2)%(1 |2). We will now do this in the case of the simplest basic

building block: two unconnected nodes.

Given a graph that is just two unconnected nodes, as depicted in Fig-

ure 3.10, these nodes are not associated simply because there is no edge

between them. To show this, consider the factorization of %(G1 , G2) that
the Bayesian network factorization (Definition 3.1) gives us:

%(G1 , G2) = %(G1)%(G2) (3.5)

That’s it; applying the Bayesian network factorization immediately gives

us a proof that the two nodes -1 and -2 are unassociated (independent)

in this building block. And what is the assumption that allows us to

prove this? That % is Markov with respect to the graph in Figure 3.10.

-1 -2

Figure 3.10: Two unconnected nodes

In contrast, if there is an edge between the two nodes (as in Figure 3.11),

then the two nodes are associated. The assumption we leverage here is

the causal edges assumption (Assumption 3.3), which means that -1

is a cause of -2. Since -1 is a cause of -2, -2 must be able to change

in response to changes in -1, so -2 and -1 are associated. In general,

any time two nodes are adjacent in a causal graph, they are associated.
6

We will see this same concept several more times in Section 3.5 and

Section 3.6.

Now that we’ve covered the relevant two-node graphs, we’ll cover the

flowof association in the remaining graphical building blocks (three-node

graphs in Figure 3.9), starting with chain graphs.

3.5 Chains and Forks

Chains (Figure 3.12) and forks (Figure 3.13) share the same set of depen-

dencies. In both structures, -1 and -2 are dependent, and -2 and -3

are dependent for the same reason that we discussed toward the end

of Section 3.4. Adjacent nodes are always dependent when we make

the causal edges assumption (Assumption 3.3). What about -1 and -3,
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-2

-1 -3

Figure 3.13: Fork with flow of association

drawn as a dashed red arc.

[15]: Pearl et al. (2016), Causal inference in
statistics: A primer

-2-1 -3

Figure 3.14: Chain with association

blocked by conditioning on -2.

-2

-1 -3

Figure 3.15: Fork with association blocked

by conditioning on -2.

though? Does association flow from -1 to -3 through -2 in chains and

forks?

Usually, yes, -1 and -3 are associated in both chains and forks. In chain

graphs, -1 and -3 are usually dependent simply because -1 causes

changes in -2 which then causes changes in -3. In a fork graph, -1 and

-3 are also usually dependent. This is because the same value that -2

takes on is used to determine both the value that -1 takes on and the

value that -3 takes on. In other words, -1 and -3 are associated through

their (shared) common cause. We use the word “usually” throughout this

paragraph because there exist pathological cases where the conditional

distributions %(G2 |G1) and %(G3 |G2) are misaligned in such a specific way

that makes -1 and -3 not actually associated [see, e.g., 15, Section 2.2].

An intuitive graphical way of thinking about -1 and -3 being associated

in chains and forks is to visualize the flow of association. We visualize

this with a dashed red line in Figure 3.12 and Figure 3.13. In the chain

graph (Figure 3.12), association flows from -1 to -3 along the path

-1 → -2 → -3. Symmetrically, association flows from -3 to -1 along

that same path, just running opposite the arrows. In the fork graph

(Figure 3.13), association flows from -1 to -3 along the path -1 ← -2 →
-3. And similarly, we can think of association flowing from -3 to -1

along that same path, just as was the case with chains. In general, the

flow of association is symmetric.

Chains and forks also share the same set of independencies. When we

condition on -2 in both graphs, it blocks the flow of association from

-1 to -3. This is because of the local Markov assumption; each variable

can locally depend on only its parents. So when we condition on -2

(-3’s parent in both graphs), -3 becomes independent of -1 (and vice

versa).

We will refer to this independence as an instance of a blocked path. We

illustrate these blocked paths in Figure 3.14 and Figure 3.15. Conditioning

blocks the flow of association in chains and forks. Without conditioning,

association is free to flow in chains and forks; we will refer to this as

an unblocked path. However, the situation is completely different with

immoralities, as we will see in the next section.

That’s all nice intuition, but what about the proof? We can prove that

-1 ⊥⊥ -3 | -2 using just the local Markov assumption. We will do this by

showing that %(G1 , G3 | G2) = %(G1 | G2)%(G3 | G2). We’ll show the proof

for chain graphs. It is usually useful to start with the Bayesian network

factorization. For chains, we can factorize %(G1 , G2 , G3) as follows:

%(G1 , G2 , G3) = %(G1)%(G2 |G1)%(G3 |G2) (3.6)

Bayes’ rule tells us that %(G1 , G3 | G2) = %(G1 ,G2 ,G3)
%(G2) , so we have

%(G1 , G3 | G2) =
%(G1)%(G2 |G1)%(G3 |G2)

%(G2)
(3.7)

Since we’re looking to end up with %(G1 | G2)%(G3 | G2) and we already

have %(G3 |G2), we must turn the rest into %(G1 | G2). We can do this by
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7
Active reading exercise: prove that

-1 ⊥⊥ -3 | -2 for forks (Figure 3.15).

-2

-1
-3

Figure 3.16: Immorality with association

blocked by a collider.

-2

-1
-3

Figure 3.17: Immorality with association

unblocked by conditioning on the collider.

another application of Bayes rule:

%(G1 , G3 | G2) =
%(G1 , G2)
%(G2)

%(G3 |G2) (3.8)

= %(G1 |G2)%(G3 |G2) (3.9)

With that, we’ve shown that -1 ⊥⊥ -3 | -2. Try it yourself; prove the

analog in forks.
7

Flow of Causation The flow of association is symmetric, whereas the

flow of causation is not. Under the causal edges assumption (Assump-

tion 3.3), causation only flows in a single direction. Causation only flows

along directed paths. Association flows along any path that does not

contain an immorality.

3.6 Colliders and their Descendants

Recall from Section 3.1 that we have an immorality when we have a child

whose two parents do not have an edge connecting them (Figure 3.16).

And in this graph structure, the child is known as a bastard. No, just

kidding; it’s called a collider.

In contrast to chains and forks, in an immorality, -1 ⊥⊥ -3. Look at

the graph structure and think about it a bit. Why would -1 and -3 be

associated? One isn’t the descendant of the other like in chains, and

they don’t share a common cause like in forks. Rather, we can think of

-1 and -3 simply as unrelated events that happen, which happen to

both contribute to some common effect (-2). To show this, we apply the

Bayesian network factorization and marginalize out G2:

%(G1 , G3) =
∑
G2

%(G1 , G2 , G3) (3.10)

=
∑
G2

%(G1)%(G3)%(G2 | G1 , G3) (3.11)

= %(G1)%(G3)
∑
G2

%(G2 | G1 , G3) (3.12)

= %(G1)%(G3) (3.13)

We illustrate the independence of -1 and -3 in Figure 3.16 by showing

that the association that we could have imagined as flowing along the

path -1 → -2 ← -3 is actually blocked at -2. Because we have a collider

on the path connecting -1 and -3, association does not flow through

that path. This is another example of a blocked path, but this time the path

is not blocked by conditioning; the path is blocked by a collider.

Good-Looking Men are Jerks Oddly enough, when we condition on

the collider -2, its parents -1 and -3 become dependent (depicted

in Figure 3.17). An example is the easiest way to see why this is the

case. Imagine that you’re out dating men, and you notice that most

of the nice men you meet are not very good-looking, and most of the

good-looking men you meet are jerks. It seems that you have to choose

between looks and kindness. In other words, it seems like kindness and

looks are negatively associated. However, what if I also told you that

there is an important third variable here: availability (whether men are
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Active reading exercise: Come up with

your own example of an immorality and

how conditioning on the collider induces

association between its parents. Hint:

think of rare events for -1 and -3 where,

if either of them happens, some outcome

-2 will happen.

already in a relationship or not)? And what if I told you that a man’s

availability is largely determined by their looks and kindness; if they are

both good-looking and kind, then they are in a relationship. The available

men are the remaining ones, the ones who are either not good-looking

or not kind. You see an association between looks and kindness because

you’ve conditioned on a collider (availability). You’re only looking at

men who are not in a relationship. You can see the causal structure of

this example by taking Figure 3.17 and replacing -1 with “looks,” -3

with “kindness,” and -2 with “availability.”

The above example naturally suggests that, when dating men, maybe

you should consider not conditioning on -2 = “not in a relationship”

and, instead, condition on -2 = “in a relationship.” However, you could

run into other variables -4 that introduce new immoralities there. Such

moral questions are outside the scope of this book.

Returning to inside the scope of this book, we have that conditioning

on a collider can turn a blocked path into an unblocked path. The parents
-1 and -3 are not associated in the general population, but when we

condition on their shared child-2 taking on a specific value, they become

associated. Conditioning on the collider -2 allows associated to flow

along the path -1 → -2 ← -3, despite the fact that it does not when we

don’t condition on -2. We illustrate this in the move from Figure 3.16 to

Figure 3.17.

We also illustrate this with a scatter plot in Figure 3.18. In Figure 3.18a,

we plot the whole population, with kindness on the x-axis and looks

on the y-axis. As you can see, the variables are not associated in the

general population. However, if we remove the ones who are already in

a relationship (the orange ones in Figure 3.18b), we are left with the clear

negative association that we see in Figure 3.18c. This phenomenon is

known as Berkson’s paradox. The fact that we see this negative association

simply because we are selecting a biased subset of the general population

to look at is why this is sometimes referred to as selection bias [see, e.g., 7,
Chapter 8]

[7]: Hernán and Robins (2020), Causal In-
ference: What If

.
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(a) Looks and kindness data for the whole

population. Looks and kindness are indepen-

dent.
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(b) Looks and kindness data grouped by

whether the person is available or not.Within

each group, there is a negative correlation.
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(c) Looks and kindness data for only the

available people. Now, there is a negative

correlation.

Figure 3.18: Example data for the “good-looking men are jerks” example. Both looks and kindness are continuous values on a scale from 0

to 10.

Numerical Example All of the above has been to give you intuition

about why conditioning on a collider induces association between its

parents, but we have yet to give a concrete numerical example of this.

We will give a simple one here. Consider the following data generating
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process (DGP), where -1 and -3 are drawn independently from standard

normal distributions and then used to compute -2:

-1 ∼ #(0, 1) , -3 ∼ #(0, 1) (3.14)

-2 = -1 + -3 (3.15)

We’ve already stated that -1 and -3 are independent, but to juxtapose

the two calculations, let’s compute their covariance:

Cov(-1 , -3) = E[(-1 − E[-1])(-3 − E[-3])]
= E[-1-3] (zero mean)

= E[-1]E[-3] (independent)

= 0

Now, let’s compute their covariance, conditional on -2:

Cov(-1 , -3 | -2 = G) = E[-1-3 | -2 = G] (3.16)

= E[-1(G − -1)] (3.17)

= GE[-1] − E[-2

1
] (3.18)

= −1 (3.19)

Crucially, in Equation 3.17, we used Equation 3.15 to plug in for -3 in

terms of -1 and -2 (conditioned to G). This led to a second-order term,

which led to the calculation giving a nonzero number, which means -1

and -3 are associated, conditional on -2.

Descendants of Colliders Conditioning on descendants of a collider

also induces association in between the parents of the collider. The

intuition is that if we learn something about a collider’s descendant, we

usually also learn something about the collider itself because there is

a direct causal path from the collider to its descendants, and we know

that nodes in a chain are usually associated (see Section 3.5), assuming

minimality (Assumption 3.2). In other words, a descendant of a collider

can be thought of as a proxy for that collider, so conditioning on the

descendant is similar to conditioning on the collider itself.

Active reading exercise:We have provided

several techniques for how to think about

colliders: high-level examples, numerical

examples, and abstract reasoning. Use at

least one of them to convince yourself

that conditioning on a descendant of a

collider can induce association between

the collider’s parents.
3.7 d-separation

Before we define d-separation, we’ll codify what we mean by the con-

cept of a “blocked path,” which we’ve been discussing in the previous

sections:

Definition 3.3 (blocked path) A path between nodes - and . is blocked
by a (potentially empty) conditioning set / if either of the following is true:

1. Along the path, there is a chain · · · →, → · · · or a fork
· · · ←, → · · ·, where, is conditioned on (, ∈ /).

2. There is a collider, on the path that is not conditioned on (, ∉ /)
and none of its descendants are conditioned on (de(,) * /).

Then, an unblocked path is simply the complement; an unblocked path is a
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[13]: Koller and Friedman (2009), Proba-
bilistic Graphical Models: Principles and Tech-
niques

path that is not blocked. The graphical intuition to have in mind is that

association flows along unblocked paths, and association does not flow

along blocked paths. If you don’t have this intuition in mind, then it is

probably worth it to reread the previous two sections, with the goal of

gaining this intuition. Now, we are ready to introduce a very important

concept: d-separation.

Definition 3.4 (d-separation) Two (sets of) nodes - and . are d-separated
by a set of nodes / if all of the paths between (any node in) - and (any node
in) . are blocked by / [16] [16]: Pearl (1988), Probabilistic Reasoning

in Intelligent Systems: Networks of Plausible
Inference

.

If all the paths between two nodes - and . are blocked, then we say that

- and. are d-separated. Similarly, if there exists at least one path between

- and . that is unblocked, then we say that - and . are d-connected.

As we will see in Theorem 3.1, d-separation is such an important concept

because it implies conditional independence. We will use the notation

- ⊥⊥� . | / to denote that - and . are d-separated in the graph �

when conditioning on /. Similarly, we will use the notation - ⊥⊥% . | /
to denote that - and . are independent in the distribution % when

conditioning on /.

Theorem 3.1 Given that % is Markov with respect to � (satisfies the local
Markov assumption, Assumption 3.1), if - and . are d-separated in �
conditioned on /, then - and . are independent in % conditioned on /. We
can write this succinctly as follows:

- ⊥⊥� . | / =⇒ - ⊥⊥% . | / (3.20)

Because this is so important, we will give Equation 3.20 a name: the global
Markov assumption. Theorem 3.1 tells us that the local Markov assumption

implies the global Markov assumption.

Just as we built up the intuition that suggested that the local Markov

assumption (Assumption 3.1) implies the Bayesian network factorization

(Definition 3.1) and alerted you to the fact that the Bayesian network

factorization also implies the local Markov assumption (the two are equiv-

alent), it turns out that the global Markov assumption also implies the

local Markov assumption. In other words, the local Markov assumption,

global Markov assumption, and the Bayesian network factorization are

all equivalent [see, e.g., 13, Chapter 3]. Therefore, we will use the slightly

shortened phrase Markov assumption to refer to these concepts as a

group, or we will simply write “% is Markov with respect to �” to convey

the same meaning.

Active reading exercise: To get some practice with d-separation, here are

some questions about d-separation in Figure 3.19.

Questions about Figure 3.19a:

1. Are ) and . d-separated by the empty set?

2. Are ) and . d-separated by,2?

3. Are ) and . d-separated by {,2 , "1}?
4. Are ) and . d-separated by {,1 , "2}?
5. Are ) and . d-separated by {,1 , "2 , -2}?
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6. Are ) and . d-separated by {,1 , "2 , -2 , -3}?

Questions about Figure 3.19b:

1. Are ) and . d-separated by the empty set?

2. Are ) and . d-separated by,?

3. Are ) and . d-separated by {,, -2}?

) "1 "2 .

,1

,2

,3

-3

-2

-1

(a)

)

-1

.

,

-2

(b)

Figure 3.19: Graphs for d-separation exercise

3.8 Flow of Association and Causation

Now that we have covered the necessary preliminaries (chains, forks,

colliders, and d-separation), it is worth emphasizing how association and

causation flow in directed graphs. Association flows along all unblocked

paths. In causal graphs, causation flows along directed paths. Recall from

Section 1.3.2 that not only is association not causation, but causation is a

sub-category of association. That’s why association and causation both

flow along directed paths.

We refer to the flowof association along directed paths as causal association.
A common type of non-causal association that makes total association

not causation is confounding association. In the graph in Figure 3.20, we

depict the confounding association in red and the causal association in

blue.

-

) .

confounding association

causal association

Figure 3.20: Causal graph depicting an

example of how confounding association

and causal association flow.

Regular Bayesian networks are purely statistical models, so we can only

talk about the flow of association in Bayesian networks. Association still

flows in exactly the same way in Bayesian networks as it does in causal

graphs, though. In both, association flows along chains and forks, unless

a node is conditioned on. And in both, a collider blocks the flow of

association, unless it is conditioned on. Combining these building blocks,

we get how association flows in general DAGs. We can tell if two nodes

are not associated (no association flows between them) by whether or

not they are d-separated.
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8
Recall that the first part of the minimal-

ity assumption is just the local Markov

assumption and that the second part is

contained in the causal edges assumption.

Causal graphs are special in that we additionally assume that the edges

have causal meaning (causal edges assumption, Assumption 3.3). This

assumption is what introduces causality into our models, and it makes

one type of path take on a whole new meaning: directed paths. This

assumption endows directed paths with the unique role of carrying

causation along them. Additionally, this assumption is asymmetric; “-

is a cause of .” is not the same as saying “. is a cause of - .” This means

that there is an important difference between association and causation:

association is symmetric, whereas causation is asymmetric.

d-separation Implies Association is Causation Given that we have

tools to measure association, how can we isolate causation? In other

words, how can we ensure that the association we measure is causation,

say, for measuring the causal effect of - on .? Well, we can do that by

ensuring that there is no non-causal association flowing between - and

.. This is true if - and . are d-separated in the augmented graph where

we remove outgoing edges from - . This is because all of -’s causal effect

on . would flow through it’s outgoing edges, so once those are removed,

the only association that remains is purely non-causal association.

In Figure 3.21, we illustrate what each of the important assumptions

gives us in terms of interpreting this flow of association. First, we have

the (local/global) Markov assumption (Assumption 3.1). As we saw

in Section 3.7, this assumption allows us to know which nodes are

unassociated. In other words, the Markov assumption tells along which

paths the association does not flow. When we slightly strengthen the

Markov assumption to the minimality assumption (Assumption 3.2),

we get which paths association does flow along (except in intransitive

edges cases). When we further add in the causal edges assumption

(Assumption 3.3), we get that causation flows along directed paths.

Therefore, the following two
8
assumptions are essential for graphical

causal models:

1. Markov Assumption (Assumption 3.1)

2. Causal Edges Assumption (Assumption 3.3)

Statistical

Independencies

Statistical

Dependencies

Causal

Dependencies

Markov

Assumption

Minimality

Assumption

Causal Edges

Assumption

Figure 3.21: A flowchart that illustrates what kind of claims we can make about our data as we add each additional important assumption.
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Causal models are essential for identification of causal quantities. When

we presented the Identification-Estimation Flowchart (Figure 2.5) back

in Section 2.4, we described identification as the process of moving

from a causal estimand to a statistical estimand. However, to do that,

we must have a causal model. We depict this more full version of the

Identification-Estimation Flowchart in Figure 4.1.

Causal Estimand Causal Model

Statistical Estimand Data

Estimate

Figure 4.1: The Identification-Estimation Flowchart – a flowchart that illustrates the process

of moving from a target causal estimand to a corresponding estimate, through identification

and estimation. In contrast to Figure 2.5, this version is augmented with a causal model

and data.

The previous chapter gives graphical intuition for causal models, but it

doesn’t explain how to identify causal quantities and formalize causal

models. We will do that in this chapter.

4.1 The do-operator and Interventional
Distributions

The first thing that we will introduce is a mathematical operator for

intervention. In the regular notation for probability, we have conditioning,

but that isn’t the same as intervening. Conditioning on ) = C just means

that we are restricting our focus to the subset of the population to those

who received treatment C. In contrast, an intervention would be to take

the whole population and give everyone treatment C. We illustrate this in

Figure 4.2. We will denote intervention with the do-operator: do() = C).
This is the notation commonly used in graphical causal models, and it has

equivalents in potential outcomes notation. For example, we can write

the distribution of the potential outcome .(C) that we saw in Chapter 2

as follows:

%(.(C) = H) , %(. = H | do() = C)) , %(H | do(C)) (4.1)

Note that we shorten do() = C) to just do(C) in the last option in Equation

4.1. We will use this shorthand throughout the book. We can similarly

write the ATE (average treatment effect) when the treatment is binary as

follows:

E[. | do() = 1)] − E[. | do() = 0)] (4.2)
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Population Conditioning InterveningSubpopulations

oror

) = 1) = 1) = 0

) = 0

do() = 1)

do() = 0)

Figure 4.2: Illustration of the difference between conditioning and intervening

We will often work with full distributions like %(. | do(C)), rather than
their means, as this is more general; if we characterize %(. | do(C)), then
we’ve characterized E[. | do(C)]. We will commonly refer to %(. | do() =

C)) and other expressions with the do-operator in them as interventional
distributions.

Interventional distributions such as %(. | do() = C)) are conceptually

quite different from the observational distribution %(.). Observational

distributions such as %(.) or %(., ), -) do not have the do-operator in
them. Because they don’t have the do-operator, we can observe data from

them without needing to carry out any experiment. This is why we call

data from %(., ), -) observational data. If we can reduce an expression

& with do in it (an interventional expression) to one without do in it (an

observational expression), then & is said to be identifiable. An expression

with a do in it is fundamentally different from an expression without a

do in it, despite the fact that in do-notation, do appears after a regular

conditioning bar. As we discussed in Section 2.4, we will refer to an

estimand as a causal estimand when it contains a do-operator, and we

refer to an estimand as a statistical estimand when it doesn’t contain a

do-operator.

Whenever, do(C) appears after the conditioning bar, it means that ev-

erything in that expression is in the post-intervention world where the

intervention do(C) occurs. For example, E[. | do(C), / = I] refers to the

expected outcome in the subpopulation where / = I after the whole

subpopulation has taken treatment C. In contrast, E[. | / = I] simply

refers to the expected value in the (pre-intervention) population where

individuals take whatever treatment they would normally take ()). This

distinction will become important when we get to counterfactuals in

Chapter 13.
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2
Yes, the word “consistent” is extremely

overloaded.

4.2 The Main Assumption: Modularity

Before we can describe a very important assumption, we must specify

what a causal mechanism is. There are a few different ways to think about

causal mechanisms. In this section, we will refer to the causal mechanism

that generates -8 as the conditional distribution of -8 given all of its

causes: %(G8 | pa8). As we show graphically in Figure 4.3, the causal

mechanism that generates -8 is all of -8 ’s parents and their edges that go

into -8 . We will give a slightly more specific description of what a causal

mechanism is in Section 4.5.1, but these suffice for now.

-8

Figure 4.3:A causal graph with the causal

mechanism that generates -8 depicted in-

side an ellipse.

In order to get many causal identification results, the main assumption

we will make is that interventions are local. More specifically, we will

assume that intervening on a variable -8 only changes the causal mech-

anism for -8 ; it does not change the causal mechanisms that generate

any other variables. In this sense, the causal mechanisms are modular.
Other names that are used for the modularity property are independent
mechanisms, autonomy, and invariance. We will now state this assumption

more formally.

Assumption 4.1 (Modularity / IndependentMechanisms / Invariance)

If we intervene on a set of nodes ( ⊆ [=],1 1
Weuse [=] to refer to the set {1, 2, . . . , =}.setting them to constants, then for

all 8, we have the following:

1. If 8 ∉ (, then %(G8 | pa8) remains unchanged.
2. If 8 ∈ (, then %(G8 | pa8) = 1 if G8 is the value that -8 was set to by

the intervention; otherwise, %(G8 | pa8) = 0.

In the second part of the above assumption, we could have alternatively

said %(G8 | pa8) = 1 if G8 is consistent with the intervention2 and 0 otherwise.

More explicitly, we will say (in the future) that if 8 ∈ (, a value G8 is

consistent with the intervention if G8 equals the value that -8 was set to

in the intervention.

The modularity assumption is what allows us to encode many differ-

ent interventional distributions all in a single graph. For example, it

could be the case that %(.), %(. | do() = C)), %(. | do() = C′)), and
%(. | do()2 = C2)) are all completely different distributions that share

almost nothing. If this were the case, then each of these distributions

would need their own graph. However, by assuming modularity, we can

encode them all with the same graph that we use to encode the joint

%(., ), )2 , . . . ), and we can know that all of the factors (except ones that

are intervened on) are shared across these graphs.

The causal graph for interventional distributions is simply the same

graph that was used for the observational joint distribution, but with

all of the edges to the intervened node(s) removed. This is because the

probability for the intervened factor has been set to 1, so we can just

ignore that factor (this is the focus of the next section). Another way to

see that the intervened node has no causal parents is that the intervened

node is set to a constant value, so it no longer depends on any of the

variables it depends on in the observational setting (its parents). The

graph with edges removed is known as the manipulated graph.
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3
The other key principle is the global

Markov assumption (Theorem 3.1), which

is the assumption that d-separation im-

plies conditional independence.

For example, consider the causal graph for an observational distribution

in Figure 4.4a. Both %(. | do() = C)) and %(. | do() = C′)) correspond
to the causal graph in Figure 4.4b, where the incoming edge to ) has

been removed. Similarly, %(. | do()2 = C2)) corresponds to the graph

in Figure 4.4c, where the incoming edges to )2 have been removed.

Although it is not expressed in the graphs (which only express conditional

independencies and causal relations), under the modularity assumption,

%(.), %(. | ) = C′), and %(. | do()2 = C2)) all shared the exact same

factors (that are not intervened on).

.

)
)2

)3

(a) Causal graph for observational distri-

bution

.

)
)2

)3

(b) Causal graph after intervention on )
(interventional distribution)

.

)
)2

)3

(c) Causal graph after intervention on )2

(interventional distribution)

Figure 4.4: Intervention as edge deletion in causal graphs

What would it mean for the modularity assumption to be violated?

Imagine that you intervene on -8 , and this causes the mechanism that

generates a different node -9 to change; an intervention on -8 changes

%(G 9 | pa9), where 9 ≠ 8. In other words, the intervention is not local to

the node you intervene on; causal mechanisms are not invariant to when

you change other causal mechanisms; the causal mechanisms are not

modular.

This assumption is so important that Judea Pearl refers to a closely

related version (which we will see in Section 4.5.2) as The Law of
Counterfactuals (and Interventions), one of two key principles from

which all other causal results follow.
3
Incidentally, taking the modularity

assumption (Assumption 4.1) and the Markov assumption (the other key

principle) together gives us causal Bayesian networks. We’ll now move to

one of the important results that follow from these assumptions.

4.3 Truncated Factorization

Recall the Bayesian network factorization (Definition 3.1), which tells us

that if % is Markov with respect to a graph �, then % factorizes as follows:

%(G1 , . . . , G=) =
∏
8

%(G8 | pa8) (4.3)

where pa8 denotes the parents of -8 in �. Now, if we intervene on some

set of nodes ( and assume modularity (Assumption 4.1), then all of the

factors should remain the same except the factors for-8 ∈ (; those factors
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should change to 1 (for values consistent with the intervention) because

those variables have been intervened on. This is how we get the truncated
factorization.

Proposition 4.1 (Truncated Factorization) We assume that % and� satisfy
the Markov assumption and modularity. Given, a set of intervention nodes (,
if G is consistent with the intervention, then

%(G1 , . . . , G= | do(( = B)) =
∏
8∉(

%(G8 | pa8) . (4.4)

Otherwise, %(G1 , . . . , G= | do(( = B)) = 0.

The key thing that changedwhenwemoved from the regular factorization

in Equation 4.3 to the truncated factorization in Equation 4.4 is that the

latter’s product is only over 8 ∉ ( rather than all 8. In other words, the

factors for 8 ∈ ( have been truncated.

4.3.1 Example Application and Revisiting “Association is
Not Causation”

To see the power that the truncated factorization gives us, let’s apply it

to identify the causal effect of treatment on outcome in a simple graph.

Specifically, we will identify the causal quantity %(H | do(C)). In this

example, the distribution % is Markov with respect to the graph in Figure

4.5. The Bayesian network factorization (from the Markov assumption),

gives us the following:

%(H, C, G) = %(G)%(C | G)%(H | C , G) (4.5)

-

) .

Figure 4.5: Simple causal structure where

- counfounds the effect of ) on . and

where - is the only confounder.

When we intervene on the treatment, the truncated factorization (from

adding the modularity assumption) gives us the following:

%(H, G | do(C)) = %(G)%(H | C , G) (4.6)

Then, we simply need to marginalize out G to get what we want:

%(H | do(C)) =
∑
G

%(H | C , G)%(G) (4.7)

We assumed - is discrete when we summed over its values, but we can

simply replace the sum with an integral if - is continuous. Throughout

this book, that will be the case, so we usually won’t point it out.

If we massage Equation 4.7 a bit, we can clearly see how association is not

causation. The purely associational counterpart of %(H | do(C)) is %(H | C).
If the %(G) in Equation 4.7 were %(G | C), then we would actually recover

%(H | C). We briefly show this:∑
G

%(H | C , G)%(G | C) =
∑
G

%(H, G | C) (4.8)

= %(H | C) (4.9)

This gives some concreteness to the difference between association

and causation. In this example (which is representative of a broader
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4
Aswementioned in Section 3.8, blocking

all backdoor paths is equivalent to having

d-separation in the graph where edges

going out of) are removed. This is because

these are the only edges that causation

flows along, so once they are removed, all

that remains is non-causation association.

5
Active reading exercise: In a generalDAG,

which set of nodes related to) will always

be a sufficient adjustment set? Which set

of nodes related to . will always be a

sufficient adjustment set?

phenomenon), the difference between %(H | do(C)) and %(H | C) is the
difference between %(G) and %(G | C).

To round this example out, say ) is a binary random variable, and we

want to compute the ATE. %(H | do() = 1)) is the distribution for .(1), so
we can just take the expectation to get E[.(1)]. Similarly, we can do the

same thing with .(0). Then, we can write the ATE as follows:

E[.(1) − .(0)] =
∑
H

H %(H | do() = 1)) −
∑
H

H %(H | do() = 0)) (4.10)

If we then plug in Equation 4.7 for %(H | do() = 1)) and %(H | do() = 0)),
we have a fully identified ATE. Given the simple graph in Figure 4.5, we

have shown howwe can use the truncated factorization to identify causal

effects in Equations 4.5 to 4.7. We will now generalize this identification

process to a more general formula.

4.4 The Backdoor Adjustment

Recall from Chapter 3 that causal association flows from ) to . along

directed paths and that non-causal association flows along any other

paths from ) to . that aren’t blocked by either 1) a non-collider that

is conditioned on or 2) a collider that isn’t conditioned on. These non-

directed unblocked paths from) to. are known as backdoor paths because
they have an edge that goes in the “backdoor” of the ) node. And it turns

out that if we can block these paths by conditioning, we can identify

causal quantities like %(. | do(C)).4

This is precisely what we did in the previous section. We blocked the

backdoor path ) ← - → . in Figure 4.5 simple by conditioning on -

and marginalizing it out (Equation 4.7). In this section, we will generalize

Equation 4.7 to arbitrary DAGs. But before we do that, let’s graphically

consider why the quantity %(H | do(C)) is purely causal.

As we discussed in Section 4.2, the graph for the interventional dis-

tribution %(. | do(C)) is the same as the graph for the observational

distribution %(., ), -), but with the incoming edges to ) removed. For

example, if we take the graph from Figure 4.5 and intervene on ), then

we get the manipulated graph in Figure 4.6. In this manipulated graph,

there cannot be any backdoor paths because no edges are going into the

backdoor of ). Therefore, all of the association that flows from ) to . in

the manipulated graph is purely causal.

-

) .

Figure 4.6:Manipulated graph that results

from intervening on ), when the original

graph is Figure 4.5.

With that digression aside, let’s prove that we can identify %(H | do(C)).
Wewant to turn the causal estimand%(H | do(C)) into a statistical estimand

(only relies on the observational distribution). We’ll start with assuming

we have a set of variables, that satisfy the backdoor criterion:

Definition 4.1 (Backdoor Criterion) A set of variables , satisfies the
backdoor criterion relative to ) and . if the following are true:

1. , blocks all backdoor paths from ) to ..
2. , does not contain any descendants of ).
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6
We will come back to what goes wrong

if we condition on descendants of ) in Sec-

tion 4.5.3, after we cover some important

concepts that we need before we can fully

explain that.

Satisfying the backdoor criterion makes, a sufficient adjustment set.5
We saw an example of - as a sufficient adjustment set in Section 4.3.1.

Because there was only a single backdoor path in Section 4.3.1, a single

node (-) was enough to block all backdoor paths, but, in general, there

can be multiple backdoor paths.

To introduce, into the proof, we’ll use the usual trick of conditioning

on variables and marginalizing them out:

%(H | do(C)) =
∑
F

%(H | do(C), F)%(F | do(C)) (4.11)

Given that, satisfies the backdoor criterion, we can write the following:

∑
F

%(H | do(C), F)%(F | do(C)) =
∑
F

%(H | C , F)%(F | do(C)) (4.12)

This follows from themodularity assumption (Assumption 4.1). If, is all

of the parents for . (other than )), it should be clear that the modularity

assumption immediately implies %(H | do(C), F) = %(H | C , F). If, isn’t

the parents of . but still blocks all backdoor paths another way, then this

equality is still true but requires using the graphical knowledge we built

up in Chapter 3.

In the manipulated graph (for %(H | do(C), F)), all of the )-. association

flows along the directed path(s) from ) to ., since there cannot be

any backdoor paths because ) has no incoming edges. Similarly, in the

regular graph (for %(H | C , F)), all of the )-. association flows along

the directed path(s) from ) to .. This is because, even though there

exist backdoor paths, the association that would flow along them is

blocked by, , leaving association to only flow along directed paths. In

both cases, association flows along the exact same directed paths, which

correspond to the exact same conditional distributions (by themodularity

assumption).

Although we’ve justified Equation 4.12, there is still a do in the expression:

%(F | do(C)). However, %(F | do(C)) = %(F). To see this, consider how )

might have influence, in the manipulated graph. It can’t be through

any path that has an edge into ) because ) doesn’t have any incoming

edges in the manipulated graph. It can’t be through any path that has an

edge going out of ) because such a path would have to have a collider,

that isn’t conditioned on, on the path. We know any such colliders are

not conditioned on because we have assumed that, does not contain

descendants of ) (second part of the backdoor criterion).
6
Therefore, we

can write the final step:∑
F

%(H | C , F)%(F | do(C)) =
∑
F

%(H | C , F)%(F) (4.13)

This is known as the backdoor adjustment.

Theorem 4.2 (Backdoor Adjustment) Given the modularity assumption
(Assumption 4.1), that, satisfies the backdoor criterion (Definition 4.1), and
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positivity (Assumption 2.3), we can identify the causal effect of ) on .:

%(H | do(C)) =
∑
F

%(H | C , F)%(F)

Here’s a concise recap of the proof (Equations 4.11 to 4.13) without all of

the explanation/justification:

Proof.

%(H | do(C)) =
∑
F

%(H | do(C), F)%(F | do(C)) (4.14)

=
∑
F

%(H | C , F)%(F | do(C)) (4.15)

=
∑
F

%(H | C , F)%(F) (4.16)

Relation to d-separation We can use the backdoor adjustment if, d-

separates) from. in the manipulated graph. Recall from Section 3.8 that

we mentioned that we would be able to isolate the causal association if )

is d-separated from . in the manipulated graph. “Isolation of the causal

association” is identification. We can also isolate the causal association if

. is d-separated from ) in the manipulated graph, conditional on, . This

is what the first part of the backdoor criterion is about and what we’ve

codified in the backdoor adjustment.

4.4.1 Relation to Potential Outcomes

Hmm, the backdoor adjustment (Theorem 4.2) looks quite similar to

the adjustment formula (Theorem 2.1) that we saw back in the potential

outcomes chapter:

E[.(1) − .(0)] = E, [E[. | ) = 1, ,] − E[. | ) = 0, ,]] (4.17)

We can derive this from the more general backdoor adjustment in a few

steps. First, we take an expectation over .:

E[. | do(C)] =
∑
F

E[. | C , F]%(F) (4.18)

Then, we notice that the sum over F and %(F) is an expectation (for

discrete F, but just replace with an integral if not):

E[. | do(C)] = E,E[. | C ,,] (4.19)

And finally, we look at the difference between ) = 1 and ) = 0:

E[. | do() = 1)] −E[. | do() = 0)] = E, [E[. | ) = 1,,] − E[. | ) = 0,,]]
(4.20)

Since the do-notation E[. | do(C)] is just another notation for the potential

outcomes E[.(C)], we are done! If you remember, one of the main as-

sumptions we needed to get Equation 4.17 (Theorem 2.1) was conditional



4 Causal Models 40

exchangeability (Assumption 2.2), which we repeat below:

(.(1), .(0)) ⊥⊥ ) | , (4.21)

However, we had no way of knowing how to choose , or knowing

that that, actually gives us conditional exchangeability. Well, using

graphical causal models, we know how to choose a valid, : we simply

choose , so that it satisfies the backdoor criterion. Then, under the

assumptions encoded in the causal graph, conditional exchangeability

provably holds; the causal effect is provably identifiable.

4.5 Structural Causal Models (SCMs)

Graphical causal models such as causal Bayesian networks give us

powerful ways to encode statistical and causal assumptions, but we have

yet to explain exactly what an intervention is or exactly what a causal

mechanism is. Moving from causal Bayesian networks to full structural

causal models will give us this additional clarity along with the power to

compute counterfactuals.

4.5.1 Structural Equations

As Judea Pearl often says, the equals sign in mathematics does not convey

any causal information. Saying � = � is the same as saying � = �.

Equality is symmetric. However, in order to talk about causation, we

must have something asymmetric. We need to be able to write that �

is a cause of �, meaning that changing � results in changes in �, but

changing � does not result in changes in �. This is what we get when we

write the following structural equation:

� := 5 (�) , (4.22)

where 5 is some function that maps � to �. While the usual “=” symbol

does not give us causal information, this new “:=” symbol does. This

is a major difference that we see when moving from statistical models

to causal models. Now, we have the asymmetry we need to describe

causal relations. However, the mapping between � and � is deterministic.

Ideally, we’d like to allow it to be probabilistic, which allows room for

some unknown causes of � that factor into this mapping. Then, we can

write the following:

� := 5 (�,*) , (4.23)

where* is someunobserved randomvariable.Wedepict this in Figure 4.7,

where* is drawn inside a dashed node to indicate that it is unobserved.

The unobserved * is analogous to the randomness that we would

see by sampling units (individuals); it denotes all the relevant (noisy)

background conditions that determine �. More concretely, there are

analogs to every part of the potential outcome .8(C): � is the analog of .,

� = 0 is the analog of ) = C, and* is the analog of 8.

�

� *

Figure 4.7: Graph for simple structural

equation. The dashed node* means that

* is unobserved.

The functional form of 5 does not need to be specified, and when

left unspecified, we are in the nonparametric regime because we aren’t

making any assumptions about parametric form. Although the mapping
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7
Trust me; the recursion ends. The base

case was specified.

is deterministic, because it takes a random variable * (a “noise” or

“background conditions” variable) as input, it can represent any stochastic

mapping, so structural equations generalize the probabilistic factors

%(G8 | pa8) that we’ve been using throughout this chapter. Therefore, all

the results that we’ve seen such as the truncated factorization and the

backdoor adjustment still holdwhenwe introduce structural equations.

Cause and Causal Mechanism Revisited We have now come to the

more precise definitions of what a cause is (Definition 3.2) and what a

causal mechanism is (introduced in Section 4.2). A causal mechanism

that generates a variable is the structural equation that corresponds to

that variable. For example, the causal mechanism for � is Equation 4.23.

Similarly, - is a direct cause of . if - appears on the right-hand side of

the structural equation for .. We say that - is a cause of . if - is a direct

cause of any of the causes of .7
or if - is a direct cause of ..

We only showed a single structural equation in Equation 4.23, but there

can be a large collection of structural equations in a single model, which

we will commonly label". For example, we write structural equations

for Figure 4.8 below:

" :

� := 5�(�,*�)
� := 5�(�, �,*�)
� := 5�(�, �,*�)

(4.24)

�

� *�

�

*�

�

*�

Figure 4.8: Graph for the structural equa-

tions in Equation 4.24.

In causal graphs, the noise variables are often implicit, rather than

explicitly drawn. The variables that we write structural equations for

are known as endogenous variables. These are the variables whose causal

mechanisms we are modeling – the variables that have parents in the

causal graph. In contrast, exogenous variables are variables who do not

have any parents in the causal graph; these variables are external to our

causal model in the sense that we choose not to model their causes. For

example, in the causal model described by Figure 4.8 and Equation 4.24,

the endogenous variables are {�, �, �}. And the exogenous variables

are {�,*� , *� , *�}.

Definition 4.2 (Structural Causal Model (SCM)) A structural causal
model is a tuple of the following sets:

1. A set of endogenous variables +
2. A set of exogenous variables*
3. A set of functions 5 , one to generate each endogenous variable as a

function of other variables

For example, ", the set of three equations above in Equation 4.24

constitutes an SCMwith corresponding causal graph in Figure 4.8. Every

SCM implies an associated causal graph: for each structural equation,

draw an edge from every variable on the right-hand side to the variable

on the left-hand side.

If the causal graph contains no cycles (is a DAG) and the noise variables

* are independent, then the causal model is Markovian; the distribution
% is Markov with respect to the causal graph. If the causal graph doesn’t

contain cycles but the noise terms are dependent, then the model is semi-
Markovian. For example, if there is unobserved confounding, the model
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[5]: Holland (1986), ‘Statistics and Causal

Inference’

[17]: Pearl (2009), ‘Causal inference in

statistics: An overview’

is semi-Markovian. Finally, the graphs of non-Markovian models contain

cycles. We will largely be considering Markovian and semi-Markovian

models in this book.

4.5.2 Interventions

Interventions in SCMs are remarkably simple. The intervention do() = C)
simply corresponds to replacing the structural equation for ) with ) := C.

For example, consider the following causal model" with corresponding

causal graph in Figure 4.9:

-

) .

Figure 4.9: Basic causal graph

" :

) := 5)(-,*))
. := 5.(-, ),*.)

(4.25)

If we then intervene on ) to set it to C, we get the interventional SCM"C

below and corresponding manipulated graph in Figure 4.10.

"C :

) := C

. := 5.(-, ),*.)
(4.26)

-

) .

Figure 4.10: Basic causal with the the in-

coming edges to ) removed, due to the

intervention do() = C).

The fact that do() = C) only changes the equation for ) and no other

variables is a consequence of the modularity assumption; these causal

mechanisms (structural equations) are modular. Assumption 4.1 states

the modularity assumption in the context of causal Bayesian networks,

but we need a slightly different translation of this assumption for SCMs.

Assumption 4.2 (Modularity Assumption for SCMs) Consider an SCM
" and an interventional SCM"C that we get by performing the intervention
do() = C). The modularity assumption states that " and "C share all of
their structural equations except the structural equation for ), which is ) := C

in"C .

In other words, the intervention do() = C) is localized to ). None of the

other structural equations change because they are modular; the causal

mechanisms are independent. The modularity assumption for SCMs is

what gives us what Pearl calls the The Law of Counterfactuals, which

we briefly mentioned at the end of Section 4.2, after we defined the

modularity assumption for causal Bayesian networks. But before we can

get to that, we must first introduce a bit more notation.

In the causal inference literature, there are many different ways of writing

the unit-level potential outcome. In Chapter 2, we used .8(C). However,

there are other ways such as .C
8
or even .C(D). For example, in his

prominent potential outcomes paper, Holland [5] uses the .C(D) notation.
In this notation, D is the analog of 8, just as we mentioned is the case

for the * in Equation 4.23 and the paragraph that followed it. This is

the notation that Pearl uses for SCMs as well [see, e.g., 17, Definition

4]. So .C(D) denotes the outcome that unit D would observe if they take

treatment C, given that the SCM is ". Similarly, we define ."C (D) as
the outcome that unit D would observe if they take treatment C, given

that the SCM is"C (remember that"C is the same SCM as" but with

the structural equation for ) changed to ) := C). Now, we are ready to
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Active reading exercise: Can you recall

which was the other key principle/as-

sumption?

Active reading exercise: Take what you

now know about structural equations,

and relate it to other parts of this chap-

ter. For example, how do interventions in

structural equations relate to the modu-

larity assumption? How does the mod-

ularity assumption for SCMs (Assump-

tion 4.2) relate to the modularity assump-

tion in causal Bayesian networks (Assump-

tion 4.1)? Does this modularity assump-

tion for SCMs still give us the backdoor

adjustment?

,

") .

Figure 4.11: Causal graph where all cau-

sation is blocked by conditioning on".

,

") .

Figure 4.12: Causal graph where part of

the causation is blocked by conditioning

on".

,

) .

/

Figure 4.13: Causal graph where condi-

tioning on the collider / induces bias.

present one of Pearl’s two key principles from which all other causal

results follow:
8

Definition 4.3 (The Law of Counterfactuals (and Interventions))

.C(D) = ."C (D) (4.27)

This is called “The Law of Counterfactuals” because it gives us informa-

tion about counterfactuals. Given an SCM with enough details about it

specified, we can actually compute counterfactuals. This is a big deal

because this is exactly what the fundamental problem of causal inference

(Section 2.2) told uswe cannot do.Wewon’t saymore about how to do this

until we get to the dedicated chapter for counterfactuals: Chapter 13.

4.5.3 Collider Bias and Why to Not Condition on
Descendants of Treatment

In defining the backdoor criterion (Definition 4.1) for the backdoor

adjustment (Theorem 4.2), not only did we specify that the adjustment

set, blocks all backdoor paths, but we also specified that, does not

contain any descendants of ). Why? There are two categories of things

that could go wrong if we condition on descendants of ):

1. We block the flow of causation from ) to ..

2. We induce non-causal association between ) and ..

As we’ll see, it is fairly intuitive why we want to avoid the first category.

The second category is a bit more complex, and we’ll break it up into two

different parts, each with their own paragraph. This more complex part

is actually why we delayed this explanation to after we introduced SCMs,

rather than back when we introduced the backdoor criterion/adjustment

in Section 4.4.

If we condition on a node that is on a directed path from ) to ., then we

block the flow of causation along that causal path. We will refer to a node

on a directed path from ) to . as a mediator, as it mediates the effect of

) on .. For example, in Figure 4.11, all of the causal flow is blocked by

". This means that we will measure zero association between ) and .

(given that, blocks all backdoor paths). In Figure 4.12, only a portion of

the causal flow is blocked by". This is because causation can still flow

along the ) → . edge. In this case, we will get a non-zero estimate of

the causal effect, but it will still be biased, due to the causal flow that"

blocks.

If we condition on a descendant of) that isn’t amediator, it could unblock

a path from ) to . that was blocked by a collider. For example, this is

the case with conditioning on / in Figure 4.13. This induces non-causal

association between ) and ., which biases the estimate of the causal

effect. Consider the following general kind of path, where → · · · →
denotes a directed path: ) → · · · → /← · · · ← .. Conditioning on /,

or any descendant of / in a path like this, will induce collider bias. That
is, the causal effect estimate will be biased by the non-causal association

that we induce when we condition on / or any of its descendants (see

Section 3.6).
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,

") .

/

Figure 4.14: Causal graph where the child

of a mediator is conditioned on.

,

*"

") .

/

Figure 4.15: Magnified causal graph

where the child of a mediator is condi-

tioned on.

/2

) .

/1
/3

Figure 4.16: Causal graph depicting M-

Bias.

What about conditioning on / in Figure 4.14? Would that induce bias?

Recall that graphs are frequently drawn without explicitly drawing

the noise variables. If we magnify part of the graph, making "’s noise

variable explicit, we get Figure 4.15. Now, we see that ) → " ← *"

forms an immorality. Therefore, conditioning on / induces an association

between ) and*" . This induced non-causal association is another form

of collider bias. You might find this unsatisfying because . is not one

of the immoral parents here; rather ) and *" are the ones living the

immoral lifestyle. So why would this change the association between )

and .? One way to get the intuition for this is that there is now induced

association flowing between ) and*" through the edge ) → ", which

is also an edge that causal association is flowing along. You can think of

these two types of association getting tangled up along the ) → " edge,

making the observed association between ) and . not purely causal. See

Pearl [18, Section 11.3.1 and 11.3.3] for more information on this topic.

Note that we actually can condition on some descendants of ) without

inducing non-causal associations between ) and .. For example, condi-

tioning on descendants of ) that aren’t on any causal paths to . won’t

induce bias. However, as you can see from the above paragraph, this can

get a bit tricky, so it is safest to just not condition on any descendants of

), as the backdoor criterion prescribes. Even outside of graphical causal

models (e.g. in potential outcomes literature), this rule is often applied; it

is usually described as not conditioning on any post-treatment covariates.

M-Bias Unfortunately, even if we only condition on pretreatment co-

variates, we can still induce collider bias. Consider what would happen

if we condition on the collider /2 in Figure 4.16. Doing this opens up

a backdoor path, along which non-causal association can flow. This is

known as M-bias due to the M shape that this non-causal association

flows along when the graph is drawn with children below their parents.

For many examples of collider bias, see Elwert and Winship [19].

4.6 Example Applications of the Backdoor
Adjustment

4.6.1 Association vs. Causation in a Toy Example

In this section, we posit a toy generative process and derive the bias of the

associational quantity E[. | C]. We compare this to the causal quantity

E[. | do(C)], which gives us exactly what we want. Note that both of

these quantities are actually functions of C. If the treatment were binary,

then we would just look at the difference between the quantities with

) = 1 and with ) = 0. However, because our generative processes will be

linear,
3 E[. |C]
3C and

3 E[. |do(C)]
3C actually gives us all the information about

the treatment effect, regardless of if treatment is continuous, binary, or

multi-valued. We will assume infinite data so that we can work with

expectations. This means this section has nothing to do with estimation;

for estimation, see the next section

The generative process thatwe consider has the causal graph in Figure 4.17
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and the following structural equations:

) := 1- (4.28)

. := �) + 2- . (4.29)

Note that in the structural equation for ., � is the coefficient in front of ).

This means that the causal effect of ) on . is �. Keep this in mind as we

go through these calculations.

-

) .

 1

2

�

Figure 4.17: Causal graph for toy example
From the causal graph in Figure 4.17, we can see that - is a sufficient

adjustment set. Therefore, E[. | do(C)] = E-E[. | C , -]. Let’s calculate
the value of this quantity in our example.

E-E[. | C , -] = E-
[
E[�) + 2- | ) = C , -]

]
(4.30)

= E-
[
�C + 2-

]
(4.31)

= �C + 2E[-] (4.32)

Importantly, we made use of the equality that the structural equation for

. (Equation 4.29) gives us in Equation 4.30. Now, we just have to take

the derivative to get the causal effect:

3 E-E[. | C , -]
3C

= � . (4.33)

We got exactly what we were looking for. Now, let’s move to the associa-

tional quantity:

E[. | ) = C] = E[�) + 2- | ) = C] (4.34)

= �C + 2E[- | ) = C] (4.35)

= �C + 2

1

C (4.36)

In Equation 4.36, we made use of the equality that the structural equation

for ) (Equation 4.28) gives us. If we then take the derivative, we see that

there is confounding bias:

3 E[. | C]
3C

= � + 2

1

. (4.37)

To recap, E-E[. | C , -] gave us the causal effect we were looking for

(Equation 4.33), whereas the associational quantity E[. | C] did not

(Equation 4.37). Now, let’s go through an example that also takes into

account estimation.

4.6.2 A Complete Example with Estimation

Recall that we estimated a concrete value for the causal effect of sodium

intake on blood pressure in Section 2.5. There, we used the potential

outcomes framework. Here, we will do the same thing, but using causal

graphs. The spoiler is that the 19% error that we saw in Section 2.5 was

due to conditioning on a collider.

First, we need to write down our causal assumptions in terms of a causal

graph. Remember that in Luque-Fernandez et al. [8]’s example from

epidemiology, the treatment ) is sodium intake, and the outcome . is
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blood pressure. The covariates are age, and amount of protein in urine

(proteinuria) /. Age is a common cause of both blood pressure and the

body’s ability to self-regulate sodium levels. In contrast, high amounts

of urinary protein are caused by high blood pressure and high sodium

intake. This means that proteinuria is a collider. We depict this causal

graph in Figure 4.18.

,

) .

/

Figure 4.18: Causal graph for the blood

pressure example. ) is sodium intake. .
is blood pressure., is age. And, impor-

tantly, the amount of protein excreted in

urine / is a collider.

Because / is a collider, conditioning on it induces bias. Because, and /

were grouped together as “covariates” - in Section 2.5, we conditioned

on all of them. This is why we saw that our estimate was 19% off from

the true causal effect 1.05. Now that we’ve made the causal relationships

clear with a causal graph, the backdoor criterion (Definition 4.1) tells us

to only adjust for, and to not adjust for /. More precisely, we were

doing the following adjustment in Section 2.5:

E,,/E[. | C , ,, /] (4.38)

And now, we will use the backdoor adjustment (Theorem 4.2) to change

our statistical estimand to the following:

E,E[. | C , ,] (4.39)

We have simply removed the collider / from the variables we adjust for.

For estimation, just as we did in Section 2.5, we use a model-assisted

estimator. We replace the outer expectation over, with an empirical

mean over, and replace the conditional expectation E[. | C , ,]with a

machine learning model (in this case, linear regression).

Just as writing down the graph has lead us to simply not condition on /

in Equation 4.39, the code for estimation also barely changes. We need to

change just a single line of code in our previous program (Listing 2.1).

We display the full program with the fixed line of code below:

Listing 4.1: Python code for estimating the

ATE, without adjusting for the collider

1 import numpy as np

2 import pandas as pd

3 from sklearn.linear_model import LinearRegression

4

5 Xt = df[['sodium', 'age']]

6 y = df['blood_pressure']

7 model = LinearRegression()

8 model.fit(Xt, y)

9

10 Xt1 = pd.DataFrame.copy(Xt)

11 Xt1['sodium'] = 1

12 Xt0 = pd.DataFrame.copy(Xt)

13 Xt0['sodium'] = 0

14 ate_est = np.mean(model.predict(Xt1) - model.predict(Xt0))

15 print('ATE estimate:', ate_est)

Full code, complete with simulation,

is available at https://github.com/

bradyneal/causal-book-code/blob/

master/sodium_example.py.

Namely, we’ve changed line 5 from

5 Xt = df[['sodium', 'age', 'proteinuria']]

in Listing 2.1 to

5 Xt = df[['sodium', 'age']]

in Listing 4.1. When we run this revised code, we get an ATE estimate of

1.0502, which corresponds to 0.02% error (true value is 1.05) when using

https://github.com/bradyneal/causal-book-code/blob/master/sodium_example.py
https://github.com/bradyneal/causal-book-code/blob/master/sodium_example.py
https://github.com/bradyneal/causal-book-code/blob/master/sodium_example.py
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Active reading exercise: Given that . is

generated as a linear function of ) and, ,

could we have just used the coefficient in

front of ) in the linear regression as an

estimate for the causal effect?

/2

) .

/1
/3

Figure 4.19: Causal graph depicting M-

Bias that can only be avoided by not con-

ditioning on the collider /2. This is due to

the fact that the dashed nodes /1 and /3

are unobserved.
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[18]: Pearl (2009), Causality

[13]: Koller and Friedman (2009), Proba-
bilistic Graphical Models: Principles and Tech-
niques

a fairly large sample.
9

Progression of Reducing Bias When looking at the total association

between) and. by simply regressing. on), we got an estimate that was

a staggering 407% off of the true causal effect, due largely to confounding

bias (see Section 2.5). When we adjusted for all covariates in Section 2.5,

we reduced the percent error all the way down to 19%. In this section,

we saw this remaining error is due to collider bias. When we removed

the collider bias, by not conditioning on the collider /, the error became

non-existent.

Potential Outcomes and M-Bias In fairness to the general culture

around the potential outcomes framework, it is common to only condition

on pretreatment covariates. This would prevent a practitioner who

adheres to this rule from conditioning on the collider / in Figure 4.18.

However, there is no reason that there can’t be pretreatment colliders

that induce M-bias (Section 4.5.3). In Figure 4.19, we depict an example

of M-bias that is created by conditioning on /2. We could fix this by

additionally conditioning on /1 and/or /3, but in this example, they are

unobserved (indicated by the dashed lines). This means that the only

way to avoid M-bias in Figure 4.19 is to not condition on the covariates

/2.

4.7 Assumptions Revisited

The first main set of assumptions is encoded by the causal graph that we

write down. Exactly what this causal graph means is determined by two

main assumptions, each of which can take on several different forms:

1. The Modularity Assumption
Different forms:

I ModularityAssumption forCausal BayesianNetworks (Assumption 4.1)

I Modularity Assumption for SCMs (Assumption 4.2)

I The Law of Counterfactuals (Definition 4.3)

2. The Markov Assumption
Different equivalent forms:

I Local Markov assumption (Assumption 3.1)

I Bayesian network factorization (Definition 3.1)

I Global Markov assumption (Theorem 3.1)

Given, these two assumptions (and positivity), if the backdoor criterion

(Definition 4.1) is satisfied in our assumed causal graph, then we have

identification. Note that although the backdoor criterion is a sufficient

condition for identification, it is not a necessary condition. We will see

this more in Chapter 6.

Now that you’re familiar with causal

graphical models and SCMs, it may be

worth going back and rereading Chap-

ter 2 while trying to make connections

to what you’ve learned about graphical

causal models in these past two chapters.

More Formal If you’re really into fancy formalism, there are some

relevant sources to check out. You can see the fundamental axioms that

underlie The Law of Counterfactuals in [20, 21], or if you want a textbook,

you can find them in [18, Chapter 7.3]. To see proofs of the equivalence of

all three forms of the Markov assumption, see, for example, [13, Chapter

3].
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Connections to No Interference, Consistency, and Positivity The no

interference assumption (Assumption 2.4) is commonly implicit in causal

graphs, since the outcome . (think .8) usually only has a single node )

(think)8) for treatment as a parent, rather than havingmultiple treatment

nodes)8 ,)8−1,)8+1, etc. as parents. However, causal DAGs can be extended

to settings where there is interference [22]. Consistency (Assumption 2.5)

follows from the axioms of SCMs (see [18, Corollary 7.3.2] and [23]).

Positivity (Assumption 2.3) is still a very important assumption that we

must make, though it is sometimes neglected in the graphical models

literature.
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Randomized experiments are noticeably different from observational

studies. In randomized experiments, the experimenter has complete con-

trol over the treatment assignment mechanism (how treatment is assigned).

For example, in the most simple kind of randomized experiment, the

experimenter randomly assigns (e.g. via coin toss) each participant to

either the treatment group or the control group. This complete control

over how treatment is chosen is what distinguishes randomized experi-

ments from observational studies. In this simple experimental setup, the

treatment isn’t a function of covariates at all! In contrast, in observational

studies, the treatment is almost always a function of some covariate(s).

As we will see, this difference is key to whether or not confounding is

present in our data.

In randomized experiments, association is causation. This is because ran-
domized experiments are special in that they guarantee that there is no

confounding.As a consequence, this allows us tomeasure the causal effect

E[.(1)]−E[.(0)]via the associational differenceE[. | ) = 1] − E[. | ) = 0].
In the following sections, we explain why this is the case from a variety

of different perspectives. If any one of these explanations clicks with you,

that might be good enough. Definitely stick through to the most visually

appealing explanation in Section 5.3.

5.1 Comparability and Covariate Balance

Ideally, the treatment and control groups would be the same, in all

aspects, except for treatment. This would mean they only differ in the

treatment they receive (i.e. they are comparable). This would allow us to

attribute any difference in the outcomes of the treatment and control

groups to the treatment. Saying that these treatment groups are the same

in everything other than their treatment and outcomes is the same as

saying they have the same distribution of confounders. Because people

often check for this property on observed variables (often what people

mean by “covariates”), this concept is known as covariate balance.

Definition 5.1 (Covariate Balance) We have covariate balance if the distri-
bution of covariates - is the same across treatment groups. More formally,

%(- | ) = 1) 3=%(- | ) = 0) (5.1)

Randomization implies covariate balance, across all covariates, even

unobserved ones. Intuitively, this is because the treatment is chosen at

random, regardless of -, so the treatment and control groups should

look very similar. The proof is simple. Because ) is not at all determined

by - (solely by a coin flip), ) is independent of -. This means that
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1
Recall that the intuition is that covariate

balance means that everything is the same

between the treatment groups, except for

the treatment, so the treatment must be

the explanation for the change in ..

%(- | ) = 1) 3=%(-). Similarly, it means %(- | ) = 0) 3=%(-). Therefore,
we have %(- | ) = 1) 3=%(- | ) = 0).

Although we have proven that randomization implies covariate balance,

we have not proven that that covariate balance implies that association is

causation.
1
We’ll now prove that by showing that %(H | do(C)) = %(H | C).

For the proof, the main property we utilize is that covariate balance

implies - and ) are independent.

Proof. First, let - be a sufficient adjustment set that potentially contains

unobserved variables (randomization also balances unobserved covariates).

Such an adjustment set must exist because we allow it to contain any

variables, observed or unobserved. Then, we have the following from the

backdoor adjustment (Theorem 4.2):

%(H | do(C)) =
∑
G

%(H | C , G)%(G) (5.2)

By multiplying by
%(C |G)
%(C |G) , we get the joint distribution in the numerator:

=
∑
G

%(H | C , G)%(C | G)%(G)
%(C | G) (5.3)

=
∑
G

%(H, C, G)
%(C | G) (5.4)

Now, we use the important property that - ⊥⊥ ):

=
∑
G

%(H, C, G)
%(C) (5.5)

An application of Bayes rule and marginalization gives us the rest:

=
∑
G

%(H, G | C) (5.6)

= %(H | C) (5.7)

5.2 Exchangeability

Exchangeability (Assumption 2.1) gives us another perspective on why

randomizationmakes causation equal to association. To seewhy, consider

the following thought experiment. We decide an individual’s treatment

group using a random coin flip as follows: if the coin is heads, we assign

the individual to the treatment group () = 1), and if the coins is tails,

we assign the individual to the control group () = 0). If the groups are

exchangeable, we could exchange these groups, and the average outcomes

would remain the same. This is intuitively true if we chose the groups

with a coin flip. Imagine simply swapping the meaning of “heads” and

“tails” in this experiment. Would you expect that to change the results at

all? No. This is why randomized experiments give us exchangeability.
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Recall from Section 2.3.2 that mean exchangeability is formally the

following:

E[.(1) | ) = 1] = E[.(1) | ) = 0] (5.8)

E[.(0) | ) = 0] = E[.(0) | ) = 1] (5.9)

The “exchange” is when we go from .(1) in the treatment group to .(1)
in the control group (Equation 5.8) and from .(0) in the control group to

.(0) in the treatment group (Equation 5.9).

To see the proof of why association is causation in randomized ex-

periments through the lens of exchangeability, recall the proof from

Section 2.3.2. First, recall that Equation 5.8 means that both quantities in

it are equal to the marginal expected outcome E[.(1)] and, similarly, that

Equation 5.8 means that both quantities in it are equal to the marginal

expected outcome E[.(0)]. Then, we have the following proof:

E[.(1)] − E[.(0)] = E[.(1) | ) = 1] − E[.(0) | ) = 0] (2.3 revisited)

= E[. | ) = 1] − E[. | ) = 0] (2.4 revisited)

5.3 No Backdoor Paths

The final perspective that we’ll look at to see why association is causation

in randomized experiments is that of graphical causal models. In regular

observational data, there is almost always confounding. For example,

in Figure 5.1, we see that - is a confounder of the effect of ) on ..

Non-causal association flows along the backdoor path ) ← - → ..

-

) .

confounding association

Figure 5.1: Causal structure of - con-

founding the effect of ) on ..

However, if we randomize ), something magical happens: ) no longer

has any causal parents, as we depict in Figure 5.2. This is because ) is

purely random. It doesn’t depend on anything other than the output of a

coin toss (or a quantum random number generator, if you’re into the kind

of stuff). Because ) has no incoming edges, under randomization, there

are no backdoor paths. So the empty set is a sufficient adjustment set. This

means that all of the association that flows from ) to . is causal. We can

identify %(. | do() = C)) by simply applying the backdoor adjustment

(Theorem 4.2), adjusting for the empty set:

%(. | do() = C)) = %(. | ) = C)

-

) .

Figure 5.2: Causal structure when we ran-

domize treatment.

With that, we conclude our discussion of why association is causation in

randomized experiments. Hopefully, at least one of these three explana-

tions is intuitive to you and easy to store in long-term memory.



Nonparametric Identification 6
6.1 Frontdoor Adjustment . . . 52
6.2 do-calculus . . . . . . . . . . 55

Application: Frontdoor Ad-
justment . . . . . . . . . . . 57

6.3 Determining Identifiability
from the Graph . . . . . . . 58

In Section 4.4, we saw that satisfying the backdoor criterion is sufficient

to give us identifiability, but is the backdoor criterion also necessary?

In other words, is it possible to get identifiability without being able to

block all backdoor paths?

As an example, consider that we have data generated according to the

graph in Figure 6.1. We don’t observe, in this data, so we can’t block the

backdoor path through, and the confounding association that flows

along it. But we still need to identify the causal effect. It turns out that it

is possible to identify the causal effect in this graph, using the frontdoor

criterion. We’ll see the frontdoor criterion and corresponding adjustment

in Section 6.1. Then, we’ll consider even more general identification in

Section 6.2 when we introduce do-calculus. We’ll conclude with graphical

conditions for identifiability in Section 6.3.

,

") .

confounding association

causal association

Figure 6.1: Causal graph where, is un-

observed, so we cannot block the back-

door path. We depict the flow of causal

association and the flow of confounding

association with dashed lines.

6.1 Frontdoor Adjustment

The high-level intuition for why we can identify the causal effect of ) on

. in the graph in Figure 6.1 (evenwhenwe can’t adjust for the confounder

, because it is unobserved) is as follows: a mediator like " is very

helpful; we can isolate the association that flows through" by focusing

our statistical analysis on", and the only association that flows through

" is causal association (association flowing along directed paths from )

to .). We illustrate this intuition in Figure 6.2, where we depict only the

causal association. In this section, we will focus our analysis on" using a

three step procedure (see Figure 6.3 for our corresponding illustration):

1. Identify the causal effect of ) on".

2. Identify the causal effect of" on ..

3. Combine the above steps to identify the causal effect of ) on ..

,

") .

focus

only causal association

Figure 6.2: In contrast to Figure 6.1, when

we focus our analysis on ", we are able

to isolate only the causal association.

,

") .
Step 1 Step 2

Step 3

Figure 6.3: Illustration of steps to get to

the frontdoor adjustment.

Step 1 First, we will identify the effect of ) on": %(< | do(C)). Because
. is a collider on the ) −" path through, , it blocks that backdoor path.

So there are no unblocked backdoor paths from ) to". This means that

the only association that flows from ) to" is the causal association that

flows along the edge connecting them. Therefore, we have the following

identification via the backdoor adjustment (Theorem 4.2, using the empty

set as the adjustment set):
1

1
Active reading exercise: Write a proof for

Equation 6.1 without using the backdoor

adjustment. Instead, start from the trun-

cated factorization (Proposition 4.1) like

we did in Section 4.3.1. Hint: The proof

can be quite short. We provide a proof in

Appendix A.1, in case you get stuck.

%(< | do(C)) = %(< | C) (6.1)

Step 2 Second, we will identify the effect of " on .: %(H | do(<)).
Because ) blocks the backdoor path" ← ) ←, → ., we can simply
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equation

quick

maths

,

)

"

.
much

rigor

very

wow

Figure 6.5: Equationtown

adjust for ). Therefore, using the backdoor adjustment again, we have

the following:

%(H | do(<)) =
∑
C

%(H | <, C)%(C) (6.2)

Step 3 Now that we know how changing ) changes" (step 1) and how

changing " changes . (step 2), we can combine these two to get how

changing ) changes . (through"):

%(H | do(C)) =
∑
<

%(< | do(C))%(H | do(<)) (6.3)

The first factor on the right-hand side corresponds to setting ) to C

and observing the resulting value of". The second factor corresponds

to setting " to exactly the value < that resulted from setting ) and

then observing what value of . results. We must sum over < because

%(< | do(C)) is probabilistic, so we must sum over its support. In other

words, we must sum over all possible realizations < of the random

variables whose distribution is %(" | do(C)).

If we then plug in Equations 6.1 and 6.2 into Equation 6.3, we get the

frontdoor adjustment (keep reading to see the definition of the frontdoor

criterion):

Theorem 6.1 (Frontdoor Adjustment) If (), ",.) satisfy the frontdoor
criterion and we have positivity, then

%(H | do(C)) =
∑
<

%(< | C)
∑
C′
%(H | <, C′)%(C′) (6.4)

The causal graph we’ve been using (Figure 6.4) is an example of a simple

graph that satisfies the frontdoor criterion. To get the full definition, we

must first define complete/full mediation: a set of variables" completely

mediates the effect of ) on . if all causal (directed) paths from ) to

. go through ". We now give the general definition of the frontdoor

criterion:

,

") .

Figure 6.4: Simple causal graph that satis-

fies the frontdoor criterion

Definition 6.1 (Frontdoor Criterion) A set of variables " satisfies the
frontdoor criterion relative to ) and . if the following are true:

1. " completely mediates the effect of ) on . (i.e. all causal paths from )

to . go through").
2. There is no unblocked backdoor path from ) to".
3. All backdoor paths from" to . are blocked by ).2

2
Active reading exercise: Think of a graph

other than Figure 6.4 that satisfies the

frontdoor criterion. Also, for each condi-

tion, think of a graph that does not satisfy
only that condition.

Although Equations 6.1 and 6.2 are straightforward applications of the

backdoor adjustment, we hand-waved our way to Equation 6.3, which

was key to the frontdoor adjustment (Theorem 6.1). We’ll now walk

through how to get Equation 6.3. Active reading exercise: Feel free to

stop reading here and do this yourself.

We are about to enter Equationtown (Figure 6.5), so if you are satisfiedwith

the intuition we gave for step 3 and prefer to not see a lot of equations,

feel free to skip to the end of the proof (denoted by the symbol).
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3
Active reading exercise: Why would it

be easy to marginalize out F if it were

the case that %(F) = %(F | <)? And why

does this equality not hold?

,

") .

Figure 6.6: Simple causal graph that satis-

fies the frontdoor criterion

4
Active reading exercise: Why is

%(H | F, <) equal to %(H | F, C′, <)?

Proof. As usual, we start with the truncated factorization, using the

causal graph in Figure 6.4. From the Bayesian network factorization

(Definition 3.1), we have the following:

%(F, C, <, H) = %(F)%(C | F)%(< | C)%(H | F, <) (6.5)

Then, using the truncated factorization (Proposition 4.1), we remove the

factor for ):

%(F, <, H | do(C)) = %(F)%(< | C)%(H | F, <) (6.6)

Next, we marginalize out F and <:∑
<

∑
F

%(F, <, H | do(C)) =
∑
<

∑
F

%(F)%(< | C)%(H | F, <) (6.7)

%(H | do(C)) =
∑
<

%(< | C)
∑
F

%(H | F, <)%(F) (6.8)

Even though we’ve removed all the do operators, recall that we are not

done because, is unobserved. So we must also remove the F from the

expression. This is where we have to get a bit creative.

We want to be able to combine %(H | F, <) and %(F) into a joint factor

over both H and F so that we can marginalize out F. To do this, we

need to get < behind the conditioning bar of the %(F) factor. This would

be easy if we could just swap %(F) out for %(F | <) in Equation 6.8.
3

The key thing to notice is that we actually can include < behind the

conditioning bar if C were also there because ) d-separates, from" in

Figure 6.6. In math, this means that the following equality holds:

%(F | C) = %(F | C , <) (6.9)

Great, so how do we get C into this party? The usual trick of conditioning

on it and marginalizing it out:

%(H | do(C)) =
∑
<

%(< | C)
∑
F

%(H | F, <)%(F) (6.8 revisited)

=
∑
<

%(< | C)
∑
F

%(H | F, <)
∑
C′
%(F | C′)%(C′) (6.10)

=
∑
<

%(< | C)
∑
F

%(H | F, <)
∑
C′
%(F | C′, <)%(C′) (6.11)

=
∑
<

%(< | C)
∑
C′
%(C′)

∑
F

%(H | F, <)%(F | C′, <) (6.12)

Great, but now we can’t combine %(H | F, <) and %(F | C′, <) because
%(H | F, <) is missing this newly introduced C′ behind its conditioning

bar. Luckily, we can fix that
4
and combine the two factors:

=
∑
<

%(< | C)
∑
C′
%(C′)

∑
F

%(H | F, <)%(F | C′, <) (6.13)

=
∑
<

%(< | C)
∑
C′
%(C′)

∑
F

%(H | F, C′, <)%(F | C′, <)

(6.14)

=
∑
<

%(< | C)
∑
C′
%(C′)

∑
F

%(H, F | C′, <) (6.15)

=
∑
<

%(< | C)
∑
C′
%(C′)%(H | C′, <) (6.16)
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[24]: Pearl (1995), ‘Causal diagrams for

empirical research’

This matches the result stated in Theorem 6.1, so we’ve completed the

derivation of the frontdoor adjustment without using the backdoor

adjustment. However, we still need to show that Equation 6.3 is correct

to justify step 3. To do that, all that’s left is to recognize that these parts

match Equations 6.1 and 6.2 and plug those in:

=
∑
<

%(< | do(C))%(H | do(<)) (6.17)

%(< | do(C)) = %(< | C) (6.1)

%(H | do(<)) =
∑
C

%(H | <, C)%(C) (6.2)

And we’re done! We just needed to be a bit clever with our uses of d-

separation and marginalization. Part of why we went through that proof

is because we will prove the frontdoor adjustment using do-calculus in
Section 6.2. This way you can easily compare a proof using the truncated

factorization to a proof using do-calculus to prove the same result.

6.2 do-calculus

As we saw in the last section, it turns out that satisfying the backdoor

criterion (Definition 4.1) isn’t necessary to identify causal effects. For

example, if the frontdoor criterion (Definition 6.1) is satisfied, that also

gives us identifiability. This leads to the following questions: can we

identify causal estimands when the associated causal graph satisfies

neither the backdoor criterion nor the frontdoor criterion? If so, how?

Pearl’s do-calculus [24] gives us the answer to these questions.

As we will see, the do-calculus gives us tools to identify causal effects

using the causal assumptions encoded in the causal graph. It will allow

us to identify any causal estimand that is identifiable. More concretely,

consider an arbitrary causal estimand %(. | do() = C), - = G), where .

is an arbitrary set of outcome variables, ) is an arbitrary set of treatment

variables, and - is an arbitrary (potentially empty) set of covariates that

we want to choose how specific the causal effect we’re looking at is. Note

that this means we can use do-calculus to identify causal effects where

there are multiple treatments and/or multiple outcomes.

In order to present the rules of do-calculus, we must define a bit of

notation for augmented versions of the causal graph �. Let �
-
denote

the graph that we get if we take � and remove all of the incoming edges
to nodes in the set -; recall from Section 4.2 that this is known as the

manipulated graph. Let �- denote the graph that we get if we take � and

remove all of the outgoing edges from nodes in the set - . The mnemonic

meaning to help you remember this is to think of parents as drawn above

their children in the graph, so the bar above - is cutting its incoming

edges and the bar below- is cutting its outgoing edges. Combining these

two, we’ll use �
-/

to denote the graph with the incoming edges to -

and the outgoing edges from / removed. And recall from Section 3.7 that

we use ⊥⊥� to denote d-separation in �. We’re now ready; do-calculus
consists of just three rules:

Theorem 6.2 (Rules of do-calculus) Given a causal graph �, an associated
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distribution %, and disjoint sets of variables ., ), /, and, , the following
rules hold.

Rule 1:

%(H | do(C), I, F) = %(H | do(C), F) if . ⊥⊥�
)
/ | ),, (6.18)

Rule 2:

%(H | do(C), do(I), F) = %(H | do(C), I, F) if . ⊥⊥�
),/
/ | ),,

(6.19)

Rule 3:

%(H | do(C), do(I), F) = %(H | do(C), F) if . ⊥⊥�
),/(,)

/ | ),,
(6.20)

where /(,) denotes the set of nodes of / that aren’t ancestors of any node of
, in �

)
.

Now, rather than recreate the proofs for these rules from Pearl [24], we’ll

give intuition for each of them in terms of concepts we’ve already seen in

this book.

Rule 1 Intuition If we take Rule 1 and simply remove the intervention

do(C), we get the following (Active reading exercise: what familiar concept

is this?):

%(H | I, F) = %(H | F) if . ⊥⊥� / | , (6.21)

This is just what d-separation gives us under the Markov assumption;

recall fromTheorem 3.1 that d-separation in the graph implies conditional

independence in %. This means that Rule 1 is simply a generalization of

Theorem 3.1 to interventional distributions.

Rule 2 Intuition Just as with Rule 1, we’ll remove the intervention do(C)
from Rule 2 and see what this reminds us of (Active reading exercise:

what concept does this remind you of?):

%(H | do(I), F) = %(H | I, F) if . ⊥⊥�/ / | , (6.22)

This is exactly what we do when we justify the backdoor adjustment

(Theorem 4.2) using the backdoor criterion (Definition 4.1). As we saw

at the ends of Section 3.8 and Section 4.4. Association is causation if the

outcome . and the treatment / are d-separated by some set of variables

that are conditioned on, . So rule 2 is a generalization of the backdoor

adjustment to interventional distributions.

Rule 3 Intuition This is the trickiest rule to understand. Just as with

the other two rules, we’ll first remove the intervention do(C) to make

thinking about this simpler:

%(H | do(I), F) = %(H | F) if . ⊥⊥�
/(,)

/ | , (6.23)

To get the equality in this equation, it must be the case that removing

the intervention do(I) (which is like taking the manipulated graph and

reintroducing the edges going into /) introduces no new association

that can affect .. Because do(I) removes the incoming edges to / to give

us �
/
, the main association that we need to worry about is association

flowing from / to . in �
/
(causal association). Therefore, you might
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,

") .

Figure 6.7: Simple causal graph that satis-

fies the frontdoor criterion

expect that the condition that gives us the equality in Equation 6.23 is

. ⊥⊥�
/
/ | , . However, we have to refine this a bit to prevent inducing

association by conditioning on the descendants of colliders (recall from

Section 3.6). Namely, / could contain colliders in �, and, could contain

descendants of these colliders. Therefore, to not induce new association

through colliders in / when we reintroduce the incoming edges to / to

get �, we must limit the set of manipulated nodes to those that are not

ancestors of nodes in the conditioning set, : /(,).

Completeness ofdo-calculus Maybe there could exist causal estimands

that are identifiable but that can’t be identified using only the rules of

do-calculus in Theorem 6.2. Fortunately, Shpitser and Pearl [25] and

Huang and Valtorta [26] independently proved that this is not the case.

They proved that do-calculus is complete, which means that these three

rules are sufficient to identify all identifiable causal estimands. Because

these proofs are constructive, they also admit algorithms that identify

any causal estimand in polynomial time.

Nonparametric Identification Note that all of this is about nonparamet-
ric identification; in other words, do-calculus tells us if we can identify

a given causal estimand using only the causal assumptions encoded

in the causal graph. If we introduce more assumptions about the dis-

tribution (e.g. linearity), we can identify more causal estimands. That

would be known as parametric identification. We don’t discuss parametric

identification in this chapter, though we will in later chapters.

6.2.1 Application: Frontdoor Adjustment

Recall the simple graph we used that satisfies the frontdoor criterion

(Figure 6.7), and recall the frontdoor adjustment:

%(H | do(C)) =
∑
<

%(< | C)
∑
C′
%(H | <, C′)%(C′) (6.4 revisited)

At the end of Section 6.1, we saw a proof for the frontdoor adjustment

using just the truncated factorization. To get an idea for how do-calculus
works and the intuition we use in proofs that use it, we’ll now do the

frontdoor adjustment proof using the rules of do-calculus.

Proof. Our goal is to identify %(H | do(C)). Because we have the intu-

ition we described in Section 6.1 that the full mediator " will help us

out, the first thing we’ll do is introduce " into the equation via the

marginalization trick:

%(H | do(C)) =
∑
<

%(H | do(C), <)%(< | do(C)) (6.24)

Because the backdoor path from ) to" in Figure 6.7 is blocked by the

collider ., all of the association that flows from ) to" is causal, so we

can apply Rule 2 to get the following:

=
∑
<

%(H | do(C), <)%(< | C) (6.25)

Now, because " is a full mediator of the causal effect of ) on ., we

should be able to replace %(H | do(C), <)with %(H | do(<)), but this will
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,

") .

Figure 6.10: �

Active reading exercise: Assuming the

backdoor criterion, prove the backdoor

adjustment using the rules of do-calculus.

take two steps of do-calculus. To remove do(C), we’ll need to use Rule 3,

which requires that) have no causal effect on. in the relevant graph. We

can get to a graph like that by removing the edge from) to" (Figure 6.9);

in do-calculus, we do this by using Rule 2 (in the opposite direction as

before) to do(<). We can do this because the existing do(C) makes it so

there are no backdoor paths from" to . in �
)
(Figure 6.8).

,

") .

Figure 6.8: �
)

,

") .

Figure 6.9: �
"

=
∑
<

%(H | do(C), do(<))%(< | C) (6.26)

Now, as we planned, we can remove the do(C) using Rule 3. We can use

Rule 3 here because there is no causation flowing from ) to . in �
"

(Figure 6.9).

=
∑
<

%(H | do(<))%(< | C) (6.27)

All that’s left is to remove this last do-operator. As we discussed in

Section 6.1, ) blocks the only backdoor path from " to . in the graph

(Figure 6.10). This means, that if we can condition on ), we can get rid

of this last do-operator. As usual, we do that by conditioning on and

marginalizingout). Rearranging abit andusing C′ for themarginalization

since C is already present:

=
∑
<

%(< | C)
∑
C′
%(H | do(<), C′)%(C′ | do(<))

(6.28)

Now, we can simply apply Rule 2, since ) blocks the backdoor path from

" to .:

=
∑
<

%(< | C)
∑
C′
%(H | <, C′)%(C′ | do(<))

(6.29)

And finally, we can apply Rule 3 to remove the last do(<) because there
is no causal effect of" on ) (i.e. there is no directed path from" to )

in the graph in (Figure 6.10).

=
∑
<

%(< | C)
∑
C′
%(H | <, C′)%(C′) (6.30)

That concludes our proof of the frontdoor adjustment using do-calculus.
It follows a different path than the proof we gave at the end of Section 6.1,

where we used the truncated factorization, but both proofs rely heavily

on intuition we get from looking at the graph.

6.3 Determining Identifiability from the Graph

It’s nice to know that we can identify any causal estimand that is possible

to identify using do-calculus, but this isn’t as satisfying as knowing

whether a causal estimand is identifiable by simply looking at the causal

graph. For example, the backdoor criterion (Definition 4.1) and the

frontdoor criterion (Definition 6.1) gave us simple ways to know for

sure that a causal estimand is identifiable. However, there are plenty of
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[27]: Tian and Pearl (2002), ‘A General

Identification Condition for Causal Effects’

5
This is analogous to what we saw

with the frontdoor criterion in Section 6.1,

where we could isolate the causal associa-

tion flowing through the full mediator"

if the ) −" relationship is unconfounded

(no unblocked backdoor paths).

,2

,1
,3

) .

Figure 6.11: Graph where blocking one

backdoor path unblocks another

[18]: Pearl (2009), Causality

causal estimands that are identifiable, even though the corresponding

causal graphs don’t satisfy the backdoor or frontdoor criterion. More

general graphical criteria exist that will tell us that these estimands are

identifiable. We will discuss these more general graphical criteria for

identifiability in this section.

Single Variable Intervention When we care about causal effects of

an intervention on a single variable, Tian and Pearl [27] provide a

relatively simple graphical criterion that is sufficient for identifiability:

the unconfounded children criterion.

Definition 6.2 (Unconfounded Children Criterion) This criterion is
satisfied if it is possible to block all backdoor paths from the treatment variable
) to all of its children that are ancestors of . with a single conditioning set.

This criterion generalizes the backdoor criterion (Definition 4.1) and the

frontdoor criterion (Definition 6.1). Like them, it is a sufficient condition
for identifiability:

Theorem 6.3 (Unconfounded Children Identifiability) Let . be the set
of outcome variables and ) be a single variable. If the unconfounded children
criterion and positivity are satisfied, then %(. = H | do() = C)) is identifiable
[27].

The intuition for unconfounded children criterion implies identifiability

is similar to the intuition for the frontdoor criterion; if we can isolate all

of the causal association flowing out of treatment along directed paths

to ., we have identifiability. To see this intuition, first, consider that all

of the causal association from ) must flow through its children. We can

isolate this causal association if there is no confounding between ) and

any of its children.
5
This isolation of all of the causal association is what

gives us identifiability of the causal effect of ) on any other node in

the graph. This intuition might lead you to suspect that this criterion is
necessary in the very specific case where the outcome set . is all of the

other variables in the graph other than ); it turns out that this is true

[27]. But this condition is not necessary if . is a smaller set than that.

To give you amore visual grasp of the intuition forwhy the unconfounded

children criterion is sufficient for identification, we give an example graph

in Figure 6.12. In Figure 6.12a, we visualize the flow of confounding

association and causal association that flows in this graph. Then,wedepict

the isolation of the causal association in that graph in Figure 6.12b.

Necessary Condition The unconfounded children criterion is not nec-

essary for identifiability, but it might aid your graphical intuition to have

a necessary condition in mind. Here is one: For each backdoor path from

) to any child " of ) that is an ancestor of ., it is possible to block

that path [18, p. 92]. The intuition for this is that because the causal

association that flows from ) to . must go through children of ) that are

ancestors of ., to be able to isolate this causal association, the effect of )

on these mediating children must be unconfounded. And a prerequisite

to these ) −" (parent-child) relationships being unconfounded is that

any single backdoor path from ) to " must be blockable (what we state

in this condition). Unfortunately, this condition is not sufficient. To see

why, consider Figure 6.11. The backdoor path) ←,1 →,2 ←,3 → .
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,1

,2

"1) .

"2

non-causal association

causal association

(a) Visualization of the flow of confound-

ing association and causal association.

,1

,2

"1) .

"2

focus

causal association

(b) Visualization of the isolation of the

causal association flowing from ) to

its children, allowing the unconfounded

children criterion to imply identifiability. Figure 6.12: Example graph that satisfies

the unconfounded children criterion

[25]: Shpitser and Pearl (2006), ‘Identifica-

tion of Joint Interventional Distributions

in Recursive Semi-MarkovianCausalMod-

els’

[28]: Shpitser and Pearl (2006), ‘Identifica-

tion of Conditional Interventional Distri-

butions’

is blocked by the collider,2. And we can block the the backdoor path

) ← ,2 → . by conditioning on ,2. However, conditioning on ,2

unblocks the other backdoor path where,2 is a collider. Being able to

block both paths individually does notmeanwe can block them bothwith

a single conditioning set. In sum, the unconfounded children criterion is

sufficient but not necessary, and this related condition is necessary but

not sufficient. Also, everything we’ve seen in this section so far is for a

single variable intervention.

Necessary and Sufficient Conditions for Multiple Variable Interven-
tions Shpitser and Pearl [25] provide a necessary and sufficient criterion

for identifiability of %(. = H | do() = C)) when . and ) are arbitrary

sets of variables: the hedge criterion. However, this is outside the scope

of this book, as it requires more complex objects such as hedges, C-

trees, and other leafy objects. Moving further along, Shpitser and Pearl

[28] provide a necessary and sufficient criterion for the most general

type of causal estimand: conditional causal effects, which take the form

%(. = H | do() = C), - = G), where ., ), and - are all arbitrary sets of

variables.

Active reading exercises:

1. Is the unconfounded criterion (Definition 6.2) satisfied in Fig-

ure 6.13a?

2. Is the unconfounded criterion satisfied in Figure 6.13b?

3. Can we get identifiability in Figure 6.13b via any simpler criterion

that we’ve seen before?
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,1
,3

) " .

(a)
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,1
,3

") .

(b)

Figure 6.13: Graphs for the questions about the unconfounded children criterion
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if - = �.
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to ..
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In the previous chapter, we covered identification. Once we identify some

causal estimand by reducing it to a statistical estimand, we still havemore

work to do.We need to get a corresponding estimate. In this chapter, we’ll

cover a variety of estimators that we can use to do this. This isn’t meant

to be anywhere near exhaustive as there are many different estimators of

causal effects, but it is meant to give you a solid introduction to them.

All of the estimators that we include full sections on are model-assisted

estimators (recall from Section 2.4). And they all work with arbitrary

statistical models such as the ones you might get from scikit-learn [29]

[29]: Pedregosa et al. (2011), ‘Scikit-learn:

Machine Learning in Python’

.

7.1 Preliminaries

Recall from Chapter 2 that we denote the individual treatment effect

(ITE) with �8 and average treatment effect (ATE) with �:

�8 , .8(1) − .8(0) (7.1)

� , E[.8(1) − .8(0)] (7.2)

ITEs are the most specific kind of causal effects, but they are hard

to estimate without strong assumptions (on top of those discussed in

Chapters 2 and 4). However, we often want to estimate causal effects that

are a bit more individualized than the ATE.

For example, say we’ve observed an individual’s covariates G; we might

like to use those to estimate a more specific effect for that individual (and

anyone else with covariates G). This brings us to the conditional average
treatment effect (CATE) �(G):

�(G) , E[.8(1) − .8(0) | - = G] (7.3)

The- that is conditioned on does not need to consist of all of the observed

covariates, but this is often the case when people refer to CATEs. We call

that individualized average treatment effects (IATEs).

ITEs and “CATEs” (what we call IATEs) are sometimes conflated, but

they are not the same. For example, two individuals could have the same

covariates, but their potential outcomes could be different because of

other unobserved differences between these individuals. If we encompass

everything about an individual that is relevant to their potential outcomes

in the vector �, then ITEs and “CATEs” are the same if - = �. In a causal

graph, � corresponds to all of the exogenous variables in the magnified

graph that have causal association flowing to ..1
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2
By “parametric identification,” we mean

identification under the parametric as-

sumptions of our statistical models. For

example, these assumptions are for extrap-

olation if we don’t have positivity.

[10]: Hastie et al. (2001), The Elements of
Statistical Learning

Unconfoundedness Throughout this chapter, whenever we are esti-

mating an ATE, we will assume that, is a sufficient adjustment set, and

whenever we are estimating a CATE, we will assume that, ∪ - is a

sufficient adjustment set. In other words, for ATE estimation, we assume

that, satisfies the backdoor criterion (Definition 4.1); equivalently for

ATE estimation, we assume that we have conditional exchangeability

given, (Assumption 2.2). And similarly for CATE estimation, assuming

, ∪ - is a sufficient adjustment set means that we are assuming that

, ∪ - satisfies the backdoor criterion / gives us unconfoundedness.

This unconfoundedness assumption gives us parametric identification
2

and allows us to focus on estimation in this chapter.

7.2 Conditional Outcome Modeling (COM)

We are interested in estimating the ATE �. We’ll start with recalling the

adjustment formula (Theorem 2.1), which can be derived as a corollary

of the backdoor adjustment (Theorem 4.2), as we saw in Section 4.4.1:

� , E[.(1) − .(0)] = E, [E[. | ) = 1, ,] − E[. | ) = 0, ,]] (7.4)

On the left-hand side of Equation 7.4, we have a causal estimand, and on

the right-hand side, we have a statistical estimand (i.e. we have identified

this causal quantity). Then, the next step in the Identification-Estimation

Flowchart (see Figure 7.1 reproduced fromSection 2.4) is to get an estimate

of this (statistical) estimand.

Causal Estimand Statistical Estimand Estimate

Identification Estimation

Figure 7.1: The Identification-Estimation Flowchart – a flowchart that illustrates the process of moving from a target causal estimand to a

corresponding estimate, through identification and estimation.

The most straightforward thing to do is to just fit a statistical model

(machine learning model) to the conditional expectation E[. | ), ,]
and then approximate E, with an empirical mean over the = data

points (
1

=

∑
8). And this is exactly what we did in the simple examples of

estimation in Sections 2.5 and 4.6.2. Tomake this more clear, we introduce

� in place of this conditional expectation:

�(1, F) − �(0, F) , E[. | ) = 1, , = F] − E[. | ) = 0, , = F] (7.5)

Then, we can fit a statistical model to �. We will denote that these fitted

models are approximations of�with a hat: �̂.Wewill refer to amodel �̂ as

a conditional outcome model. Now, we can cleanly write the model-assisted

estimator (for the ATE) that we’ve described:

Active reading exercise: What are the two

different approximations we make in this

estimator and what parts of the statistical

estimand in Equation 7.4 do each of them

replace?

�̂ =
1

=

∑
8

(
�̂(1, F8) − �̂(0, F8)

)
(7.6)

We will refer to estimators that take this form as conditional outcome model
(COM) estimators. Because minimizing the mean-squared error (MSE) of

predicting . from (), -) pairs is equivalent to modeling this conditional

expectation [see, e.g., 10, Section 2.4], there are many different models we
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[29]: Pedregosa et al. (2011), ‘Scikit-learn:

Machine Learning in Python’

3
Active reading exercise:Why dowe addi-

tionally add - to the adjustment set when

we are interested in CATEs?

4
Active reading exercise: Why is there

a severe positivity violation here? Does

this only apply in Equation 7.10 or also in

Equation 7.9? What if there were multiple

units with G8 = G?

[30]: Künzel et al. (2019), ‘Metalearners

for estimating heterogeneous treatment

effects using machine learning’

can use for �̂ in Equation 7.6 to get a COM estimator (see, e.g., scikit-learn

[29]).

For CATE estimation, because we assumed that, ∪ - is a sufficient

adjustment set, rather than just , ,
3
we must additionally add - as

an input to our conditional outcome model. More precisely, for CATE

estimation, we define � as follows:

�(C , F, G) , E[. | ) = C ,, = F, - = G] (7.7)

Then, we train a statistical model �̂ to predict . from (),,, -). And this

gives us the following COM estimator for the CATE �(G):
Active reading exercise: Write down the

causal estimand and statistical estimand

that lead us to the estimator in Equa-

tion 7.8, and proof that they’re equal under

unconfoundedness and positivity. In other

words, identify the CATE.

�̂(G) = 1

=G

∑
8:G8=G

(
�̂(1, F8 , G) − �̂(0, F8 , G)

)
(7.8)

where =G is the number of data points that have G8 = G. When we are

interested in the IATE (CATE where - is all of the observed covariates),

=G is often 1, which simplifies our estimator to a simple difference between

predictions:

�̂(G8) = �̂(1, F8 , G8) − �̂(0, F8 , G8) (7.9)

Even, though IATEs are different from ITEs (�(G8) ≠ �8), if we really want

to give estimates for ITEs, it is relatively common to take this estimator

as our estimator of the ITE �8 as well:

�̂8 = �̂(G8) = �̂(1, F8 , G8) − �̂(0, F8 , G8) (7.10)

Though, this will likely be unreliable due to severe positivity violation.
4

TheMany-FacedEstimator COMestimators havemanydifferent names

in the literature. For example, they are often called G-computation esti-

mators, parametric G-formula, or standardization in epidemiology and

biostatistics. Because we are fitting a single statistical model for � here,

“COM estimator” is sometimes referred to as an “S-learner,” where the

“S” stands for “single.”

7.3 Grouped Conditional Outcome Modeling
(GCOM)

In order to get the estimate in Equation 7.6, we must train a model that

predicts . from (),,). However, ) is often one-dimensional, whereas

, can be high-dimensional. But the input to �̂ for C is the only thing that

changes between the two terms inside the sum �̂(1, F8)−�̂(0, F8). Imagine

concatenating ) to a 100-dimensional vector, and then feeding that

through a neural network that we’re using for �̂. It seems reasonable that

the network could ignore ) while focusing on the other 100 dimensions

of its input. This would result in an ATE estimate of zero. And, indeed,

there is some evidence of COM estimators being biased toward zero

[30].

So how can we ensure that the model �̂ doesn’t ignore )? Well, we can

just train two different models �̂1(F) and �̂0(F) that model �1(F) and
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5
Künzel et al. [30] call a GCOM estimator

a “T-learner” where the “T” is for “two”

because it requires fitting two different

models: �̂1 and �̂0.

[31]: Shalit et al. (2017), ‘Estimating in-

dividual treatment effect: generalization

bounds and algorithms’

�0(F), respectively, where

�1(F) , E[. | ) = 1,, = F] and �0(F) , E[. | ) = 0,, = F] .
(7.11)

Using two separate models for the values of treatment ensures that )

cannot be ignored. To train these statistical models, we first group the

data into a group where ) = 1 and a group where ) = 0. Then, we train

�̂1(F) to predict . from, in the group where ) = 1. And, similarly, we

train �̂0(F) to predict . from, in the group where ) = 0. This gives us

a natural derivative of COM estimators (Equation 7.6), grouped conditional
outcome model (GCOM) estimators:5

�̂ =
1

=

∑
8

(
�̂1(F8) − �̂0(F8)

)
(7.12)

And just as we saw, in Equation 7.8, we can add - as an input to �̂1 and

�̂0 to get a GCOM estimator for the CATE �(G):

�̂(G) = 1

=G

∑
8:G8=G

(
�̂1(F8 , G) − �̂0(F8 , G)

)
(7.13)

While GCOM estimation seems to fix the problem that COM estimation

can have regarding bias toward zero treatment effect, it does have an

important downside. In COM estimation, we were able to make use of

all the data when we estimate the single model �̂. However, in grouped
conditional outcome model estimation, we only use the ) = 1 group to

estimate �̂1, and we only use the ) = 0 group to estimate �̂0. Importantly,

we are missing out on making the most of our data by not using all of

the data to estimate �̂1 and all of the data to estimate �̂0.

7.4 Increasing Data Efficiency

In this section, we’ll cover two ways to address the problem of data

efficiency that we mentioned is present in GCOM estimation at the end

of the last section: TARNet (Section 7.4.1) and X-Learner (Section 7.4.2).

7.4.1 TARNet

Consider that we’re using neural networks for our statistical models;

starting with that, we’ll contrast, vanilla COM estimation, GCOM estima-

tion, and TARNet. In vanilla COM estimation, the neural network is used

to predict . from (),,) (see Figure 7.2a). This has the problem of poten-

tially yielding ATE estimates that are biased toward zero, as the network

might ignore the scalar ), especially when, is high-dimensional. We

ensure that) can’t be ignored in GCOM estimation by using two separate

neural networks for the two treatment groups (Figure 7.2b). However,

this is inefficient as we only use the treatment group data for training

one network and the control group data for training the other network.

We can achieve a middle ground between vanilla COM estimation and

GCOM estimation using Shalit et al. [31]’s TARNet. With TARNet, we use

a single network that takes only, as input but then branches off into
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[30]: Künzel et al. (2019), ‘Metalearners

for estimating heterogeneous treatment

effects using machine learning’

7
Recall that �̂1(F) and �̂0(F) are approx-

imations of E[. | ) = 1,, = F] and
E[. | ) = 0,, = F], respectively.

two separate heads (sub-networks) for each treatment group. We then

use this model for �(C , F) to get a COM estimator. This has the advantage

of learning a treatment-agnostic representation (TAR) of, using all of
the data while still forcing the model to not ignore ) by branching into

two heads for the different values of ). In other words, TARNet uses

the knowledge we have about ) (as a uniquely important variable) in

its architecture. Still, the sub-networks for each of these heads are only

trained with the data for the corresponding treatment group, rather than

all of the data.
6

6
Active reading exercise: Which parts of

TARNet are like Figure 7.2a and which

parts are like Figure 7.2b? What ad-

vantages/disadvantages do Figures 7.2a

to 7.2c have relative to each other?

)
,

.

(a) A single neural network to model

�(C , F), used in vanilla COM estimation

(Section 7.2).

, .

, .

) = 1 network

) = 0 network

(b) Two neural networks: a network to

model �1(F) (top) and a network to model

�0(F) (bottom), used in GCOM estimation

(Section 7.3).

.

.

,

)
=

1

)
=

0

(c) TARNet [31]. A single neural network

to model �(C , F) that branches off into two

heads: one for ) = 1 and one for ) = 0.

Figure 7.2: Coarse neural networks architectures for vanilla COM estimation (left), GCOM estimation (middle), and TARNet (right). In this

figure, we use each arrow to denote a sub-network that has an arbitrary number of layers.

7.4.2 X-Learner

We just saw that one way to increase data efficiency relative to GCOM

estimation is to use TARNet, a COM estimator that shares some qualities

with GCOM estimators. However, TARNet still doesn’t use all of the

data for the full model (neural network). In this section, we will start

with GCOM estimation and build on it to create a class of estimators

that use all of the data for both models that are part of the estimators.

An estimator in this class is known as an X-learner [30]. Unlike TARNet,

X-learners are neither COM estimators nor GCOM estimators.

There are three steps to X-learning, and the first step is the exact same

as what’s used in GCOM estimation: estimate �̂1(G) using the treatment

group data and estimate �̂0(G) using the control group data.
7
As before,

this can be done with any models that minimize MSE. For simplicity,

in this section, we’ll be considering IATEs (- is all of the observed

variables) where - satisfies the backdoor criterion (- contains, and

no descendants of )).

The second step is the most important part as it is both where we end up

using all of the data for both models and where the “X” comes from. We

specify �̂1,8 for the treatment group ITE estimates and �̂0,8 for the control
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[30]: Künzel et al. (2019), ‘Metalearners

for estimating heterogeneous treatment

effects using machine learning’

[32]: Rosenbaum and Rubin (1983), ‘The

central role of the propensity score in ob-

servational studies for causal effects’

group ITE estimates:

�̂1,8 = .8(1) − �̂0(G8) (7.14)

�̂0,8 = �̂1(G8) − .8(0) (7.15)

Here, �̂1,8 is estimated using the treatment group outcomes and the

imputed counterfactual that we get from �̂0. Similarly, �̂0,8 is estimated

using the control group outcomes and the imputed counterfactual thatwe

get from �̂1. If you draw a line between the observed potential outcomes

and a line between the imputed potential outcomes, you can see the

“X” shape. Importantly, this “X” tells us that each treatment group ITE

estimate �̂1,8 uses both treatment group data (its observed potential

outcome under treatment), and control group data (in �̂0). Similarly, �̂0,8

is estimated with data from both treatment groups.

However, each ITE estimate only uses a single data point from its

corresponding treatment group. We can fix this by fitting a model �̂1(G)
to predict �̂1,8 from the corresponding treatment group G8 ’s. Finally, we

have a model �̂1(G) that was fit using all of the data (treatment group

data just now and control group data when �0 was fit in step 1). Similarly,

we can fit a model �̂0(G) to predict �̂0,8 from the corresponding control
group G8 ’s. The output of step 2 is two different estimators for the IATE:

�̂1(G) and �̂0(G).

Finally, in step 3, we combine �̂1(G) and �̂0(G) together to get our IATE

estimator:

�̂(G) = 6(G) �̂0(G) + (1 − 6(G)) �̂1(G) (7.16)

where 6(G) is some weighting function that produces values between 0

and 1. Künzel et al. [30] report that an estimate of the propensity score

(introduced in next section) works well, but that choosing the constant

function 0 or 1 also makes sense if the treatment groups are very different

sizes. Or that choosing 6(G) to minimize the variance of �̂(G) could also

be attractive.

Active reading exercise: In this section,

we covered the X-learner for IATE estima-

tion. What would an X-learner for more

general CATE estimation (- is arbitrary

and doesn’t necessarily contain all con-

founders,) look like?

7.5 Propensity Scores

Given that the vector of variables, satisfies the backdoor criterion (or,

equivalently, that (.(1), .(0)) ⊥⊥ ) | ,), we might wonder if it is really

necessary to condition on that whole vector to isolate causal association,

especially when, is high-dimensional. It turns out that it isn’t. If,

satisfies unconfoundedness and positivity, then we can actually get away

with only conditioning on the scalar %() = 1 | ,). We’ll let 4(F) denote
%() = 1 | , = F), as we’ll refer to 4(F) as the propensity score since it is
the propensity for (probability of) receiving treatment given that, is

F. The magic of being able to condition on the scalar 4(,) in the place

of the vector, is due to Rosenbaum and Rubin [32]’s propensity score

theorem:

Theorem 7.1 (Propensity Score Theorem) Given positivity, unconfound-
edness given, implies unconfoundedness given the propensity score 4(,).
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,

) .

Figure 7.3:Simple graphwhere, satisfies

the backdoor criterion

,

) .

Figure 7.5: Simple graph where , con-

founds the effect of ) on .

,

) .

Figure 7.6: Effective graph for pseudo-

population that we get by reweighting

the data generated according to the graph

in Figure 7.5 using inverse probability

weighting.

Equivalently,

(.(1), .(0)) ⊥⊥ ) | , =⇒ (.(1), .(0)) ⊥⊥ ) | 4(,) . (7.17)

We provide a more traditional mathematical proof in Appendix A.2 and

give a graphical proof here. Consider the graph in Figure 7.3. Because

the edge from , to ) is a symbol for the mechanism %() | ,) and
because the propensity score completely describes that distribution

(%() = 1 | ,) = 4(,)), we can think of the propensity score as a full

mediator of the effect of, on ). This means that we can redraw this

graph with 4(,) situated between , and ). And in this redrawned

graph in Figure 7.4, we can see that 4(,) blocks all backdoor paths that
, blocks, so 4(,)must be a sufficient adjustment set if, is. Therefore,

we have a graphical proof of the propensity score theorem using the

backdoor adjustment (Theorem 4.2).

,

4(,)

) .

Figure 7.4: Graph illustrating that 4(,)
blocks the backdoor path(s) that, blocks.

Importantly, this theorem means that we can swap in 4(,) in place of,

wherever we are adjusting for, in a given estimator in this chapter. For

example, this seems very useful when, is high-dimensional.

Recall The Positivity-Unconfoundedness Tradeoff from Section 2.3.4. As

we condition on more non-collider-bias-inducing variables, we decrease

confounding. However, this comes at the cost of decreasing overlap

because the, in %() = 1 | ,) becomes higher and higher dimensional.

The propensity score seems to allow us to magically fix that issue since

the 4(,) remains a scalar, even as , grows in dimension. Fantastic,

right?

Well, unfortunately, we usually don’t have access to 4(,). Rather, the
best we can do is model it. We do this by training a model to predict )

from, . For example, logistic regression (logit model) is very commonly

used to do this. And because this model is fit to the high-dimensional, ,

in some sense, we have just shifted the positivity problem to our model

for 4(,).

7.6 Inverse Probability Weighting (IPW)

What if we could resample the data in a way to make it so that association

is causation? This is themotivation behind creating “pseudo-populations”

that are made up of reweighted versions of the observed population. To

get to this, let’s recall why association is not causation in general.

Association is not causation in the graph in Figure 7.5 because, is a

common cause of ) and .. In other words, the mechanism that generates

) depends on , , and the mechanism that generates . depends on

, . Focusing on the mechanism that generates ), we can write this

mathematically as %() | ,) ≠ %()). It turns out that we can reweight

the data to get a pseudo-population where %() | ,) = %()) or %() | ,)
equals some constant; the important part is that we make ) independent

of, . The corresponding graph for such a pseudo-population has no

edge from, to ) because ) does not depend on, ; we depict this in

Figure 7.6.

It turns out that the propensity score is key to this reweighting. All we

have to do is reweight each data point with treatment ) and confounders
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8
Active reading exercise: Why is the de-

nominator 1 − 4(,) when ) = 0. Hint:

recall the precise definition of 4(,).

9
This estimator is originally fromHorvitz

and Thompson [33]

[33]: Horvitz and Thompson (1952), ‘A

Generalization of Sampling Without Re-

placement from a Finite Universe’

.

, by its inverse probability of receiving its value of treatment given that

it has its value of, . This is why this technique is called inverse probability
weighting (IPW). For individuals that received treatment 1, this weight is

1

4(,) , and for individuals that received treatment 0, this weight is
1

1−4(,) .
8

If the treatment were continuous, the weight would be
1

%() |,) , which

happens to also be the reciprocal of the generalization of the propensity

score to continuous treatment.

Why does what we described in the above paragraph work? Well, recall

that our goal is to undo confounding by “removing” the edge that goes

from, to) (i.e. move from Figure 7.5 to Figure 7.6). And the mechanism

that edge describes is %() | ,). By weighting the data points by
1

%() |,) ,
we are effectively canceling it out. That’s the intuition. Formally, we have

the following identification equation:

E[.(C)] = E

[
1() = C).
%(C | ,)

]
(7.18)

where 1() = C) is an indicator random variable that takes on the value 1

if ) = C and 0 otherwise. We provide a proof of Equation 7.18 using the

familiar adjustment formula E[.(C)] = E[E[. | C ,,]] (Theorem 2.1) in

Appendix A.3.

Assuming binary treatment, the following identification equation for the

ATE follows from Equation 7.18:

� , E[.(1) − .(0)] = E

[
1() = 1).
4(,)

]
− E

[
1() = 0).
1 − 4(,)

]
(7.19)

Now that we have a statistical estimand in the form of IPW, we can

get an IPW estimator. Replacing expectations by empirical means and

4(,) by a propensity score model 4̂(,), we get the following equivalent

formulations of the basic IPW estimator
9
for the ATE:

�̂ =
1

=

∑
8

(
1(C8 = 1)H8
4̂(F8)

−
1(C8 = 0)H8
1 − 4̂(F8)

)
(7.20)

=
1

=1

∑
8:C8=1

H8

4̂(F8)
− 1

=0

∑
8:C8=0

H8

1 − 4̂(F8)
(7.21)

where =1 and =0 are the number of treatment group units and control

group units, respectively.

Active reading exercise: What would be

the corresponding formulations of the ba-

sic IPW estimator for E[.(C)]?

Weight Trimming As you can see in Equations 7.20 and 7.21, if the

propensity scores are very close to 0 or 1, the estimates will blow up. In

order to prevent this, it is not uncommon to trim the propensity scores

that are less than & to & and those that are greater than 1 − & to 1 − &
(effectively trimming the weights to be no larger than

1

& ), though this

introduces its own problems such as bias.

CATE Estimation We can extend the ATE estimator in Equation 7.20

to get an IPW estimator for the CATE �(G) by just restricting to the data

points where G8 = G:

�̂(G) = 1

=G

∑
8:G8=G

(
1(C8 = 1)H8
4̂(F8)

−
1(C8 = 0)H8
1 − 4̂(F8)

)
(7.22)
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where =G is the number of data pointswith G8 = G. However, the estimator

in Equation 7.22 may quickly run into the problem of using very small

amounts of data, leading to high variance. More general CATE estimation

with IPW estimators is more complex and outside the scope of this book.

See, for example, Abrevaya et al. [34] and references therein.

7.7 Doubly Robust Methods

We’ve seen that we can estimate causal effects by modeling �(C , F) ,
E[. | C , F] (Sections 7.2 to 7.4) or by modeling 4(F) , %() = 1 | F)
(Section 7.6). What if we modeled both �(C , F) and 4(F)? Well, we can

and estimators that do this are sometimes doubly robust. A doubly robust

estimator has the property that it is a consistent
10
estimator of � if either

�̂ is a consistent estimator of � or 4̂ is a consistent estimate of 4. In other

words, only one of �̂ and 4̂ needs to be well-specified. Additionally, the

rate at which a doubly robust estimator converges to � is the product of
the rate at which �̂ converges to � and the rate at which 4̂ converges to 4.

This makes double robustness is very useful when we are using flexible

machine learning models in high-dimensions because, in this setting,

each of our individual models (�̂ and 4̂) converge more slowly that the

ideal rate of =−1/2
.

However, there is some controversy over how well doubly robust meth-

ods work in practice if not at least one of �̂ or 4̂ is well-specified [35].

Though, this might be contested as we get better at using doubly ro-

bust estimators with flexible machine learning models (see, e.g., [36]).

Meanwhile, the estimators that currently seem to do the best all flexibly

model � (unlike pure IPW estimators) [37]. This is why we began this

chapter with estimators that model � and dedicated several sections to

such estimators.

Doubly robust methods are largely outside the scope of this book, so

we refer the reader to an introduction by Seaman and Vansteelandt [38],

along with other seminal works on the topic: [39–41]. Additionally, there

is a large body of doubly robust work on methods that have performed

reasonably well in competitions [37]; this category is known as targeted
maximum likelihood estimation (TMLE). [42–44].

7.8 Other Methods

As this chapter is only an introduction to estimation in causal inference,

there are some methods that we’ve entirely left out. We’ll briefly describe

some of the most popular ones in this section.

Matching In matching methods, we try to match units in the treatment

group with units in the control group and throw away the non-matches

to create comparable groups. We can match in raw covariate space,

coarsened covariate space, or propensity score space. There are different

distance functions for deciding how close two units are. Furthermore,

there are different criteria for deciding whether a given distance is close

enough to count as a match (one criterion requires an exact match), how

many matches each treatment group unit can have, how many matches
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each control group unit can have, etc. See, for example, Stuart [45] for a

review.

Double Machine Learning In double machine learning, we fit three

models in two stages: two in the first stage and a final model in the second

stage. First stage:

1. Fit a model to predict . from, to get the predicted .̂.11

2. Fit a model to predict ) from, to get the to get the predicted )̂.

Then, in the second stage, we “partial out”, by looking at . − .̂ and

) − )̂. In a sense, we have deconfounded the effect of treatment on the

outcome with this partialling out. Then, we fit a model to predict . − .̂
from ) − )̂. This gives us our causal effect estimates. For more on this

topic, see, for example [46–49].

Causal Trees and Forests Another popular estimation method is to

recursively partition the data into subsets that have the same treatment

effects [50]. This forms a causal tree where the leaves are subsets of the

population with similar causal effects. Since random forests generally

perform better than decision trees, it would be great if this kind of

strategy can be extended to random forests. And it can. This extensions

is known as causal forests [51], which are part of more general class

known as generalized random forests [52]. Importantly, these methods were

developed with the goal in mind of yielding valid confidence intervals

for the estimates.

7.9 Concluding Remarks

7.9.1 Confidence Intervals

So far, in this chapter, we have only discussed point estimates for causal

effects. We haven’t discussed how we can gauge our uncertainty due

to data sampling. We haven’t discussed how to calculate confidence

intervals on these estimates. This is a machine learning perspective, after

all; who cares about confidence intervals... Jokes aside, because we are

allowing for arbitrary machine learning models in all of the estimators

we discuss, it is actually quite difficult to get valid confidence intervals.

Bootstrapping One way to get confidence intervals is to use bootstrap-

ping. With bootstrapping, we repeat the causal effect estimation process

many times, each time with a different sample (with replacement) from

our data. This allows us to build an empirical distribution for the estimate.

We can then compute whatever confidence interval we like from that em-

pirical distribution. Unfortunately, bootstrapped confidence intervals are

not always valid. For example, if we take a bootstrapped 95% confidence

interval, it might not contain the true value (estimand) 95% of the time.

Specialized Models Another way to get confidence intervals is to

analyze very specific models, rather than allowing for arbitrary models

Linear models are the simplest example of this; it is easy to get confidence

intervals in linearmodels. Similarly, if we use a linearmodel as the second

stage model in double machine learning, we can get confidence intervals.

Noticeably, causal trees and causal forests were developed with the goal

in mind of getting confidence intervals.
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7.9.2 Comparison to Randomized Experiments

You might read somewhere that some of these adjustment techniques

ensure that we’ve addressed confounding and isolated a causal effect.

Of course, this is not true when there is unobserved confounding. These

methods only address observed confounding. If there are any unobserved

confounders, these methods don’t fix that like randomization does

(Chapter 5). These adjustment methods aren’t magic. And it’s hard to

know when it is reasonable to assume we’ve observed all confounders.

That’s why it is important to run a sensitivity analysis where we gauge

how robust our causal effect estimates are to unobserved confounding.

This is the topic of the next chapter.

Active reading exercise: What kind of estimator did we use back in the

estimation examples in Sections 2.5 and 4.6.2?
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All of themethods inChapter 7 assume thatwedon’t have anyunobserved

confounding. However, unconfoundedness is an untestable assumption.

In observational studies, there could also be some unobserved con-

founder(s). Therefore, we’d like to know how robust our estimates are

to unobserved confounding. The first way we can do is by getting an

upper and lower bound on the causal effect using credible assumptions

(Section 8.1). Another way we can do this is by simulating how strong the

confounder’s effect on the treatment and the confounder’s effect on the

outcome need to be to make the true causal effect substantially different

from our estimate (Section 8.2).

,

) .

(a) No unobserved confounding

, *

) .

(b) Unobserved confounding (*)

Figure 8.1: On the left, we have the setting we have considered up till now, where we have

unconfoundedness / the backdoor criterion. On the right, we have a simple graph where

the unobserved confounder* make the causal effect of ) on . not identifiable.

8.1 Bounds

There is a tradeoff between how realistic or credible our assumptions

are and how precise of an identification result we can get. Manski [53]

calls this “The Law of Decreasing Credibility: the credibility of inference

decreases with the strength of the assumptions maintained.”

Depending on what assumptions we are willing to make, we can derive

various nonparametric bounds on causal effects. We have seen that if

we are willing to assume unconfoundedness (or some causal graph in

which the causal effect is identifiable) and positivity, we can identify a

single point for the causal effect. However, this might be unrealistic. For

example, there could always be unobserved confounding in observational

studies.

This is what motivates Charles Manski’s work on bounding causal effects

[53–60]. This gives us an interval that the causal effect must be in, rather

than telling us exactly what point in that interval the causal effect must

be. In this section, we will give an introduction to these nonparametric

bounds and how to derive them.

The assumptions that we consider are weaker than unconfoundedness,

so they give us intervals that the causal effect must fall in (under these
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Active reading exercise: Ensure you follow

how we get to these bounds.

assumptions). If we assumed the stronger assumption of unconfounded-

ness, these intervals would collapse to a single point. This illustrates the

law of decreasing credibility.

8.1.1 No-Assumptions Bound

Say all we know about the potential outcomes .(0) and .(1) is that they
are between 0 and 1. Then, the maximum value of an ITE .8(1) − .8(0) is
1 (1 - 0), and the minimum is -1 (0 - 1):

−1 ≤ .8(1) − .8(0) ≤ 1 if ∀C , 0 ≤ .(C) ≤ 1 (8.1)

So we know that all ITEs must be in an interval of length 2. Because

all the ITEs must fall inside this interval of length 2, the ATE must also

fall inside this interval of length 2. Interestingly, for ATEs, it turns out

that we can cut the length of this interval in half without making any

assumptions (beyond the min/max value of outcome); the interval that

the ATE must fall in is only of length 1.

We’ll show this result from Manski [55] in the more general scenario

where the outcome is bounded between 0 and 1:

Assumption 8.1 (Bounded Potential Outcomes)

∀C , 0 ≤ .(C) ≤ 1 (8.2)

By the same reasoning as above, this implies the following bounds on

the ITEs and ATE:

0 − 1 ≤ .8(1) − .8(0) ≤ 1 − 0 (8.3)

0 − 1 ≤ E[.(1) − .(0)] ≤ 1 − 0 (8.4)

These are intervals of length (1−0)−(0−1) = 2(1−0). And the bounds for

the ITEs cannot be made tighter without further assumptions. However,

seemingly magically, we can halve the length of the interval for the ATE.

To see this, we rewrite the ATE as follows:

E[.(1) − .(0)] = E[.(1)] − E[.(0)] (8.5)

= %() = 1)E[.(1) | ) = 1] + %() = 0)E[.(1) | ) = 0]
− %() = 1)E[.(0) | ) = 1] − %() = 0)E[.(0) | ) = 0]

(8.6)

We immediately recognize the first and last terms as friendly conditional

expectations that we can estimate from observational data:

= %() = 1)E[. | ) = 1] + %() = 0)E[.(1) | ) = 0]
− %() = 1)E[.(0) | ) = 1] − %() = 0)E[. | ) = 0]

(8.7)

Active reading exercise: What assumption

are we using here?

Because this is such an important decomposition, we’ll give it a name

and box before moving on with the bound derivation. We will call this

the observational-counterfactual decomposition (of the ATE). Also, to have
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a bit more concise notation, we’ll use � , %() = 1) moving forward.

Proposition 8.1 (Observational-Counterfactual Decomposition)

E[.(1) − .(0)] = �E[. | ) = 1] + (1 − �)E[.(1) | ) = 0]
− �E[.(0) | ) = 1] − (1 − �)E[. | ) = 0] (8.8)

Unfortunately, E[.(1) | ) = 0] and E[.(0) | ) = 1] are counterfactual.

However, we know that they’re bounded between 0 and 1. Therefore, we

get an upper bound on the complete expression by letting the quantity

that’s being added (E[.(1) | ) = 0]) equal 1 and letting the quantity

that’s being subtracted (E[.(0) | ) = 1]) equal 0. Similarly, we can get a

lower bound by letting the term that’s being added equal 0 and the term

that’s being subtracted equal 1.

Proposition 8.2 (No-Assumptions Bound) Let � denote %() = 1), where
) is a binary random variable. Given that the outcome . is bounded between
0 and 1 (Assumption 8.1), we have the following upper and lower bounds on
the ATE:

E[.(1)−.(0)] ≤ �E[. | ) = 1]+ (1−�) 1−� 0−(1−�)E[. | ) = 0]
(8.9)

E[.(1)−.(0)] ≥ �E[. | ) = 1]+ (1−�) 0−� 1−(1−�)E[. | ) = 0]
(8.10)

Importantly, the length of this interval is 1 − 0, half the length of the

naive interval that we saw in Equation 8.4. We can see this by subtracting

the lower bound from the upper bound:

�E[. | ) = 1] + (1 − �) 1 − � 0 − (1 − �)E[. | ) = 0]
−(�E[. | ) = 1] + (1 − �) 0 − � 1 − (1 − �)E[. | ) = 0])

= (1 − �) 1 + � 1 − � 0 − (1 − �) 0 (8.11)

= 1 − 0 (8.12)

This is sometimes referred to as the “no-assumptions bound” because

we made no assumptions other than that the outcomes are bounded. If

the outcomes are not bounded, then the ATE and ITEs can be anywhere

between −∞ and∞.

Running Example

Consider that we know that the outcomes are bounded between 0

and 1 (e.g., because we’re in a binary outcomes setting). This means

that the ITEs and must be bounded between -1 (0 - 1) and 1 (1 - 0),

which means that the ATE must also be bounded between -1 and

1. For this example, also consider that � = 0.3, E[. | ) = 1] = .9,

and E[. | ) = 0] = .2.1 1
Active reading exercise: How would we

estimate these conditional expectations?

Then, by plugging these in to Equations 8.9

and 8.10, we get the following bounds on the ATE:

E[.(1) − .(0)] ≤ (.3)(.9) + (1 − .3)(1) − (.3)(0) − (1 − .3)(.2) (8.13)

E[.(1) − .(0)] ≥ (.3)(.9) + (1 − .3)(0) − (.3)(1) − (1 − .3)(.2) (8.14)
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2
To see why the no-assumptions bound

always contains zero, consider what we

would need for it to not contain zero: we

would either need the upper bound to

be less than zero or the lower bound to

be greater than zero. However, this can-

not be the case. To see why, note that the

minimum upper bound is achieved when

E[. | ) = 1] = 0 and E[. | ) = 0] = 1,

which gives us an (inclusive) upper bound

of zero. Same with the lower bound.

Active reading exercise: Show that the

maximum lower bound is 0.

[58]: Manski (1997), ‘Monotone Treatment

Response’

−0.17 ≤ E[.(1) − .(0)] ≤ 0.83 (8.15)

Notice that this interval is of length 1 (1 − 0 = 1), half the length of

the naive interval −1 ≤ E[.(1) − .(0)] ≤ 1 (Equation 8.4). We will

use this running example throughout Section 8.1.

Active reading exercises:

1. What kind of bounds can we get for CATEs E[.(1) − .(0) | -],
assuming we have positivity? What goes wrong if we don’t have

positivity?

2. Say the potential outcomes are bounded in different ways: 01 ≤
.(1) ≤ 11 and 00 ≤ .(0) ≤ 10. Derive the corresponding no-

assumptions bounds in this more general setting.

The bounds in Proposition 8.2 are as tight as we can get without further

assumptions. Unfortunately, the corresponding interval always contains

0,
2
which means that we cannot use this bound to distinguish “no causal

effect” from “causal effect.” Can we get tighter bounds?

In order to bound the ATE, we must have some information about the

counterfactual part of this decomposition. We can easily estimate the

observational part from data. In the no-assumptions bound (Proposi-

tion 8.2), all we assumed is that the outcomes are bounded by 0 and 1.

If we make more assumptions, we can get smaller intervals. In the next

few sections, we will cover some assumptions that are sometimes fairly

reasonable, depending on the setting, and what tighter bounds these

assumptions get us. The general strategy we will use for all of them is to

start with the observational-counterfactual decomposition of the ATE

(Proposition 8.1),

E[.(1) − .(0)] = �E[. | ) = 1] + (1 − �)E[.(1) | ) = 0]
− �E[.(0) | ) = 1] − (1 − �)E[. | ) = 0] ,

(8.8 revisited)

and get smaller intervals by bounding the counterfactual parts using the

different assumptions we make.

The intervals we will see in the next couple of subsections will all contain

zero. We won’t see an interval that is purely positive or purely negative

until Section 8.1.4, so feel free to skip to that section if you only want to

see those intervals.

8.1.2 Monotone Treatment Response

For our first assumption beyond assuming bounded outcomes, consider

that we find ourselves in a setting where it is feasible that the treatment

can only help; it can’t hurt. This is the setting that Manski [58] considers

in context. In this setting, we can justify the monotone treatment response
(MTR) assumption:

Assumption 8.2 (Nonnegative Monotone Treatment Response)

∀8 .8(1) ≥ .8(0) (8.16)
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3
Recall that by only assuming that out-

comes are bounded between 0 and 1,

we get the no-assumptions lower bound

(Proposition 8.2):

E[.(1) − .(0)]
≥ �E[. | ) = 1] + (1 − �) 0
− � 1 − (1 − �)E[. | ) = 0]

(8.10 revisited)

4
Recall the no-assumptions upper bound

(Proposition 8.2):

E[.(1) − .(0)]
≤ �E[. | ) = 1] + (1 − �) 1
− � 0 − (1 − �)E[. | ) = 0]

(8.9 revisited)

5
Recall the no-assumptions lower bound

(Proposition 8.2):

E[.(1) − .(0)]
≥ �E[. | ) = 1] + (1 − �) 0
− � 1 − (1 − �)E[. | ) = 0]

(8.10 revisited)

This means that every ITE is nonnegative, so we can bring our lower

bound on the ITEs up from 0 − 1 (Equation 8.3) to 0. So, intuitively, this

should mean that our lower bound on the ATE should move up to 0. And

we will now see that this is the case.

Now, rather than lower bounding E[.(1) | ) = 0]with 0 and −E[.(0) |
) = 1] with −1, we can do better. Because the treatment only helps,

E[.(1) | ) = 0] ≥ E[.(0) | ) = 0] = E[. | ) = 0], so we can lower

bound E[.(1) | ) = 0] with E[. | ) = 0]. Similarly, −E[.(0) | ) = 1] ≥
−E[.(1) | ) = 1] = E[. | ) = 1] (sincemultiplying by a negative flips the

inequality), so we can lower bound −E[.(0) | ) = 1]with −E[. | ) = 1].
Therefore, we can improve on the no-assumptions lower bound

3
to get 0,

as our intuition suggested:

E[.(1) − .(0)] = �E[. | ) = 1] + (1 − �)E[.(1) | ) = 0]
− �E[.(0) | ) = 1] − (1 − �)E[. | ) = 0]

(8.8 revisited)

≥ �E[. | ) = 1] + (1 − �)E[. | ) = 0]
− �E[. | ) = 1] − (1 − �)E[. | ) = 0] (8.17)

= 0 (8.18)

Proposition 8.3 (Nonnegative MTR Lower Bound) Under the nonnega-
tive MTR assumption, the ATE is bounded from below by 0. Mathematically,

E[.(1) − .(0)] ≥ 0 (8.19)

Running Example The no-assumptions upper bound
4
still applies here,

so in our running example from Section 8.1.1 where� = .3,E[. | ) = 1] =
.9, and E[. | ) = 0] = .2, our ATE interval improves from [−0.17, 0.83]
(Equation 8.15) to [0, 0.83].

Alternatively, say the treatment can only hurt people; it can’t help them

(e.g. a gunshot wound only hurts chances of staying alive). In those cases,

we would have the nonpositive monotone treatment response assumption

and the nonpositive MTR upper bound:

Assumption 8.3 (Nonpositive Monotone Treatment Response)

∀8 .8(1) ≤ .8(0) (8.20)

Active reading exercise: Prove Proposi-

tion 8.4.

Proposition 8.4 (Nonpositive MTRUpper Bound) Under the nonpositive
MTR assumption, the ATE is bounded from above by 0. Mathematically,

E[.(1) − .(0)] ≤ 0 (8.21)

Running Example And in this setting, the no-assumptions lower

bound
5
still applies. That means that the ATE interval in our exam-

ple improves from [−0.17, 0.83] (Equation 8.15) to [−0.17, 0].

Active reading exercise: What is the ATE interval if we assume both non-

negative MTR and nonpositive MTR? Does this make sense, intuitively?
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[59]: Manski and Pepper (2000), ‘Mono-

tone Instrumental Variables: With an Ap-

plication to the Returns to Schooling’

[12]: Morgan and Winship (2014), Counter-
factuals and Causal Inference: Methods and
Principles for Social Research

8.1.3 Monotone Treatment Selection

The next assumption that we’ll consider is the assumption that the people

who selected treatment would have better outcomes than those who

didn’t select treatment, under either treatment scenario. Manski and

Pepper [59] introduced this as the monotone treatment selection (MTS)
assumption.

Assumption 8.4 (Monotone Treatment Selection)

E[.(1) | ) = 1] ≥ E[.(1) | ) = 0] (8.22)

E[.(0) | ) = 1] ≥ E[.(0) | ) = 0] (8.23)

As Morgan andWinship [12, Section 12.2.2] point out, you might think of

this as positive self-selection. Those who generally get better outcomes

self-select into the treatment group.Again,we startwith the observational-

counterfactual decomposition, and we now obtain an upper bound using

the MTS assumption (Assumption 8.4):

Proposition 8.5 (Monotone Treatment Selection Upper Bound) Under
the MTS assumption, the ATE is bounded from above by the associational
difference. Mathematically,

E[.(1) − .(0)] ≤ E[. | ) = 1] − E[. | ) = 0] (8.24)

Proof.

E[.(1) − .(0)] = �E[. | ) = 1] + (1 − �)E[.(1) | ) = 0]
− �E[.(0) | ) = 1] − (1 − �)E[. | ) = 0]

(8.8 revisited)

≤ �E[. | ) = 1] + (1 − �)E[. | ) = 1]
− �E[. | ) = 0] − (1 − �)E[. | ) = 0] (8.25)

= E[. | ) = 1] − E[. | ) = 0] (8.26)

where Equation 8.25 followed from the fact that (a) Equation 8.22 of the

MTS assumption allows us to upper bound E[.(1) | ) = 0] by E[.(1) |
) = 1] = E[.(1) | ) = 1] and (b) Equation 8.23 of the MTS assumption

allows us to upper bound −E[.(0) | ) = 1] by −E[. | ) = 0].

Running Example Recall our running example fromSection 8.1.1 where

� = .3, E[. | ) = 1] = .9, and E[. | ) = 0] = .2. The MTS assumption

gives us an upper bound, and we still have the no-assumptions lower

bound.
6

6
Recall the no-assumptions lower bound

(Proposition 8.2):

E[.(1) − .(0)]
≥ �E[. | ) = 1] + (1 − �) 0
− � 1 − (1 − �)E[. | ) = 0]

(8.10 revisited)

That means that the ATE interval in our example improves from

[−0.17, 0.83] (Equation 8.15) to [−0.17, 0.7].

Both MTR and MTS Then, we can combine the nonnegative MTR

assumption (Assumption 8.2) with theMTS assumption (Assumption 8.4)

to get the lower bound in Proposition 8.3 and the upper bound in

Proposition 8.5, respectively. In our running example, this yields the

following interval for the ATE: [0, 0.7].



8 Unobserved Confounding: Bounds and Sensitivity Analysis 79

[55]: Manski (1990), ‘Nonparametric

Bounds on Treatment Effects’

7
Recall the no-assumptions upper bound

(Proposition 8.2):

E[.(1) − .(0)]
≤ �E[. | ) = 1] + (1 − �) 1
− � 0 − (1 − �)E[. | ) = 0]

(8.9 revisited)

8
Recall the no-assumptions lower bound

(Proposition 8.2):

E[.(1) − .(0)]
≥ �E[. | ) = 1] + (1 − �) 0
− � 1 − (1 − �)E[. | ) = 0]

(8.10 revisited)

Intervals Contain Zero Although bounds from the MTR and MTS

assumptions can be useful for ruling out very large or very small causal

effects, the corresponding intervals still contain zero. This means that

these assumptions are not enough to identify whether there is an effect

or not.

8.1.4 Optimal Treatment Selection

We now consider what we will call the optimal treatment selection (OTS) as-
sumption from Manski [55]. This assumption means that the individuals

always receive the treatment that is best for them (e.g. if an expert doctor

is decidingwhich treatment to give people).Wewrite this mathematically

as follows:

Assumption 8.5 (Optimal Treatment Selection)

)8 = 1 =⇒ .8(1) ≥ .8(0) , )8 = 0 =⇒ .8(0) > .8(1) (8.27)

From the OTS assumption, we know that

E[.(1) | ) = 0] ≤ E[.(0) | ) = 0] = E[. | ) = 0] . (8.28)

Therefore, we can give an upper bound, by upper bounding

E[.(1) | ) = 0] with E[. | ) = 0] and upper bounding −E[.(0) | ) = 1]
with −0 (same as in the no-assumptions upper bound

7
):

E[.(1) − .(0)] = �E[. | ) = 1] + (1 − �)E[.(1) | ) = 0]
− �E[.(0) | ) = 1] − (1 − �)E[. | ) = 0]

(8.8 revisited)

≤ �E[. | ) = 1] + (1 − �)E[. | ) = 0]
− � 0 − (1 − �)E[. | ) = 0] (8.29)

= �E[. | ) = 1] − � 0 (8.30)

The OTS assumption also tells us that

E[.(0) | ) = 1] ≤ E[.(1) | ) = 1] = E[. | ) = 1] , (8.31)

which is equivalent to saying −E[.(0) | ) = 1] ≥ −E[. | ) = 1]. So we

can lower bound −E[.(0) | ) = 1]with −E[. | ) = 1], and we can lower

bound E[.(1) | ) = 0]with 0 (just as we did in the no-assumptions lower

bound
8
) to get the following lower bound:

E[.(1) − .(0)] = �E[. | ) = 1] + (1 − �)E[.(1) | ) = 0]
− �E[.(0) | ) = 1] − (1 − �)E[. | ) = 0]

(8.8 revisited)

≥ �E[. | ) = 1] + (1 − �) 0
− �E[. | ) = 1] − (1 − �)E[. | ) = 0] (8.32)

= (1 − �) 0 − (1 − �)E[. | ) = 0] (8.33)
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9
Active reading exercise: Show that this

interval always contains zero.

[55]: Manski (1990), ‘Nonparametric

Bounds on Treatment Effects’

10
Recall the OTS assumption (Assump-

tion 8.5):

)8 = 1 =⇒ .8(1) ≥ .8(0) (8.41)

)8 = 0 =⇒ .8(0) > .8(1) (8.42)

Because there are only two values that

) can take on, this is equivalent to the

following (contrapositives):

)8 = 0 ⇐= .8(1) < .8(0) (8.43)

)8 = 1 ⇐= .8(0) ≤ .8(1) (8.44)

[55]: Manski (1990), ‘Nonparametric

Bounds on Treatment Effects’

Proposition 8.6 (Optimal Treatment Selection Bound 1) Let � denote
%() = 1), where ) is a binary random variable. Given that the outcome . is
bounded from below by 0 (Assumption 8.1) and that the optimal treatment is
always selection (Assumption 8.5), we have the following upper and lower
bounds on the ATE:

E[.(1) − .(0)] < �E[. | ) = 1] − � 0 (8.34)

E[.(1) − .(0)] ≥ (1 − �) 0 − (1 − �)E[. | ) = 0] (8.35)

Interval Length = �E[. | ) = 1] + (1 − �)E[. | ) = 0] − 0 (8.36)

Unfortunately, this interval also always contains zero!
9
This means that

Proposition 8.6 doesn’t tell us whether the causal effect is non-zero or

not.

Running Example Recall our running example fromSection 8.1.1 where

0 = 0, 1 = 1, � = .3, E[. | ) = 1] = .9, and E[. | ) = 0] = .2. Plugging

these in to Proposition 8.6 gives us the following:

E[.(1) − .(0)] ≤ (.3) (.9) − (.3) (0) (8.37)

E[.(1) − .(0)] ≥ (1 − .3) (0) − (1 − .3) (.2) (8.38)

−0.14 ≤ E[.(1) − .(0)] ≤ 0.27 (8.39)

Interval Length = 0.41 (8.40)

We’ll now give an interval that can be purely positive or purely negative,

potentially identifying the ATE as non-zero.

A Bound That Can Identify the Sign of the ATE

It turns out that, although we take the OTS assumption from Manski

[55], the bound we gave in Proposition 8.6 is not actually the bound that

Manski [55] derives with that assumption. For example, where we used

E[.(1) | ) = 0] ≤ E[. | ) = 0], Manski uses E[.(1) | ) = 0] ≤ E[. |
) = 1]. We’ll quickly prove this inequality that Manski uses from the

OTS assumption:
10
We start by applying Equation 8.42:

E[.(1) | ) = 0] = E[.(1) | .(0) > .(1)] (8.45)

Because the random variable we are taking the expectation of is .(1), if
we flip .(0) > .(1) to .(0) ≤ .(1), then we get an upper bound:

≤ E[.(1) | .(0) ≤ .(1)] (8.46)

Finally, applying Equation 8.44, we have the result:

= E[.(1) | ) = 1] (8.47)

= E[. | ) = 1] (8.48)

Now that we have that E[.(1) | ) = 0] ≤ E[. | ) = 1], we can

prove Manski [55]’s upper bound, where we use this key inequality in
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[55]: Manski (1990), ‘Nonparametric

Bounds on Treatment Effects’

12
Active reading exercise: Using Equa-

tions 8.40 and 8.59, derive the conditions

under which OTS bound 1 yields a smaller

interval and the conditions under which

OTS bound 2 yields a smaller interval.

Equation 8.49:

E[.(1) − .(0)] = �E[. | ) = 1] + (1 − �)E[.(1) | ) = 0]
− �E[.(0) | ) = 1] − (1 − �)E[. | ) = 0]

(8.8 revisited)

≤ �E[. | ) = 1] + (1 − �)E[.(1) | ) = 1]
− � 0 − (1 − �)E[. | ) = 0] (8.49)

= �E[. | ) = 1] + (1 − �)E[. | ) = 1]
− � 0 − (1 − �)E[. | ) = 0] (8.50)

= E[. | ) = 1] − � 0 − (1 − �)E[. | ) = 0] (8.51)

Similarly, we can perform an analogous derivation
11

11
Active reading exercise: Derive Equa-

tion 8.52 yourself.

to get the lower

bound:

E[.(1) − .(0)] ≥ �E[. | ) = 1] + (1 − �) 0 − E[. | ) = 0] (8.52)

Proposition 8.7 (Optimal Treatment Selection Bound 2) Let � denote
%() = 1), where ) is a binary random variable. Given that the outcome . is
bounded from below by 0 (Assumption 8.1) and that the optimal treatment is
always selection (Assumption 8.5), we have the following upper and lower
bounds on the ATE:

E[.(1) − .(0)] ≤ E[. | ) = 1] − � 0 − (1 − �)E[. | ) = 0] (8.53)

E[.(1) − .(0)] ≥ �E[. | ) = 1] + (1 − �) 0 − E[. | ) = 0] (8.54)

Interval Length = (1 − �)E[. | ) = 1] + �E[. | ) = 0] − 0 (8.55)

This interval can also include zero, but it doesn’t have to. For example, in

our running example, it doesn’t.

Running Example Recall our running example fromSection 8.1.1 where

0 = 0, 1 = 1, � = .3, E[. | ) = 1] = .9, and E[. | ) = 0] = .2. Plugging

these in to Proposition 8.7 gives us the following for the OTS bound 2:

E[.(1) − .(0)] ≤ (.9) − (.3) (0) − (1 − .3) (.2) (8.56)

E[.(1) − .(0)] ≥ (.3) (.9) + (1 − .3) (0) − (.2) (8.57)

0.07 ≤ E[.(1) − .(0)] ≤ 0.76 (8.58)

Interval Length = 0.69 (8.59)

Application of OTS bound 1 (Proposi-

tion 8.6) to our running example:

−0.14 ≤ E[.(1) − .(0)] ≤ 0.27

(8.39 revisited)

Interval Length = 0.41 (8.40 revisited)

So while the OTS bound 2 fromManski [55] identifies the sign of the ATE

in our running example, unlike the OTS bound 1, the OTS bound 2 gives

us a 68% larger interval. You can see this by comparing Equation 8.40 (in

the above margin) with Equation 8.59.

This illustrates some important takeaways:

1. Different bounds are better in different cases.
12

2. Different bounds can be better in different ways (e.g., identifying

the sign vs. getting a smaller interval).

Mixing Bounds Fortunately because both the OTS bound 1 and OTS

bound 2 come from the same assumption (Assumption 8.5), we can take

the lower bound from OTS bound 2 and the upper bound from OTS
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,

) .

Figure 8.2: Simple causal structure where

, confounds the effect of ) on . and

where, is the only confounder.

, *

) .

Figure 8.3: Simple causal structure where

, is the observed confounders and* is

the unobserved confounders.

13
Active reading exercise: What assump-

tion is violated when the data are gener-

ated by a noiseless process?

bound 1 to get the following tighter interval that still identifies the sign:

0.07 ≤ E[.(1) − .(0)] ≤ 0.27 (8.60)

Similarly, we could have mixed the lower bound from OTS bound 1 and

the upper bound from OTS bound 2, but that would have given the worst

interval in this subsection for this specific example. It could be the best

in a different example, though.

In this section we’ve given you a taste of what kind of results we can get

from nonparametric bounds, but, of course, this is just an introduction.

For more literature on this, see, e.g., [53–60]

[54]: Manski (1989), ‘Anatomy of the Selec-

tion Problem’

[55]: Manski (1990), ‘Nonparametric

Bounds on Treatment Effects’

[56]: Manski (1993), ‘Identification Prob-

lems in the Social Sciences’

[57]: Manski (1994), ‘The selection prob-

lem’

[58]: Manski (1997), ‘Monotone Treatment

Response’

[59]: Manski and Pepper (2000), ‘Mono-

tone Instrumental Variables: With an Ap-

plication to the Returns to Schooling’

[53]: Manski (2003), Partial Identification of
Probability Distributions: Springer Series in
Statistics
[60]: Manski (2013), Public Policy in an Un-
certain World

.

8.2 Sensitivity Analysis

8.2.1 Sensitivity Basics in Linear Setting

Before this chapter, we have exclusively been working in the setting

where causal effects are identifiable. We illustrate the common example

of the confounders, as common causes of ) and . in Figure 8.2. In

this example, the causal effect of ) on . is identifiable. However, what if

there is a single unobserved confounder* , as we illustrate in Figure 8.3.

Then, the causal effect is not identifiable.

What would be the bias we’d observe if we only adjusted for the observed

confounders,? To illustrate this simply, we’ll start with a noiseless
13

linear data generating process. So consider data that are generated by

the following structural equations:

) := F, + D* (8.61)

. := �F, + �D* + �) (8.62)

So the relevant quantity that describes causal effects of ) on . is � since

it is the coefficient in front of ) in the structural equation for .. From the

backdoor adjustment (Theorem 4.2) / adjustment formula (Theorem 2.1),

we know that

E[.(1) − .(0)] = E,,* [E[. | ) = 1,,,*] − E[. | ) = 0,,,*]] = �
(8.63)

But because * isn’t observed, the best we can do is adjust for only, .

This leads to a confounding bias of

�D
D

. We’ll be focusing on identification,

not estimation, here, so we’ll consider that we have infinite data. This

means that we have access to %(,,), .). Then, we’ll write down and

prove the following proposition about confounding bias:

Proposition 8.8 When ) and . are generated by the noiseless linear process
in Equations 8.61 and 8.62, the confounding bias of adjusting for just, (and
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14
Active reading exercise: Show that

E,,* [E[. | ) = 1,,,*] − E[. | ) = 0,,,*]]
equals �.

. := �F, + �D* + �) (8.62 revisited)

not*) is �D
D
. Mathematically:

E, [E[. | ) = 1,,] − E[. | ) = 0,,]]

− E,,* [E[. | ) = 1,,,*] − E[. | ) = 0,,,*]] =
�D
D
(8.64)

Proof. We’ll prove Proposition 8.8 in 3 steps:

1. Get a closed-form expression for E, [E[. | ) = C ,,]] in terms of

F , D , �F , and �D .
2. Use step 1 to get a closed-form expression for the difference

E, [E[. | ) = 1,,] − E[. | ) = 0,,]].
3. Subtract offE,,* [E[. | ) = 1,,,*] − E[. | ) = 0,,,*]] = �.14

First, we use the structural equation for . (Equation 8.62):

E, [E[. | ) = C ,,]] = E,
[
E[�F, + �D* + �) | ) = C ,,]

]
(8.65)

= E,
[
�F, + �DE[* | ) = C ,,] + �C

]
(8.66)

This is where we use the structural equation for ) (Equation 8.61). ) := F, + D* (8.61 revisited)

Rearranging it gives us * =
)−F,

D
. We can then use that for the

remaining conditional expectation:

= E,

[
�F, + �D

(
C − F,

D

)
+ �C

]
(8.67)

= E,

[
�F, +

�D
D
C −

�DF
D

, + �C
]

(8.68)

= �FE[,] +
�D
D
C −

�DF
D

E[,] + �C (8.69)

Then, rearranging a bit, we have the following:

=

(
� +

�D
D

)
C +

(
�F −

�DF
D

)
E[,] (8.70)

The only parts of this that matter are the parts that depend on C because

we want to know the effect of ) on .. For example, consider the expected

ATE estimate we would get if we were to only adjust for, :

E, [E[. | ) = 1,,] − E[. | ) = 0,,]] (8.71)

=

(
� +

�D
D

)
(1) +

(
�F −

�DF
D

)
E[,]

−
[(
� +

�D
D

)
(0) +

(
�F −

�DF
D

)
E[,]

]
(8.72)

= � +
�D
D

(8.73)



8 Unobserved Confounding: Bounds and Sensitivity Analysis 84

, *

) .

Figure 8.4: Simple causal structure where

, is the observed confounders and* is

the unobserved confounders.

[61]: Cinelli et al. (2019), ‘Sensitivity Anal-

ysis of Linear Structural Causal Models’

15
Recall Equation 8.73:

E, [E[. | ) = 1,,] − E[. | ) = 0,,]]

= � +
�D
D

(8.73 revisited)

Finally, subtracting off E,,* [E[. | ) = 1,,,*] − E[. | ) = 0,,,*]]:

Bias = E, [E[. | ) = 1,,] − E[. | ) = 0,,]]
− E,,* [E[. | ) = 1,,,*] − E[. | ) = 0,,,*]] (8.74)

= � +
�D
D
− � (8.75)

=
�D
D

(8.76)

Generalization toArbitraryGraphs/Estimands Here,we’veperformed

a sensitivity analysis for the ATE for the simple graph structure in Fig-

ure 8.4. For arbitrary estimands in arbitrary graphs, where the structural

equations are linear, see Cinelli et al. [61].

Sensitivity Contour Plots

Because Proposition 8.8 gives us a closed-form expression for the bias in

terms of the unobserved confounder parameters D and �D , we can plot

the levels of bias in contour plots. We show this in Figure 8.5a, where we

have
1

D
on the x-axis and �D on the y-axis.

If we rearrange Equation 8.73
15
to solve for �, we get the following:

� = E, [E[. | ) = 1,,] − E[. | ) = 0,,]] −
�D
D

(8.77)

So for given values of D and �D , we can compute the true ATE �,
from the observational quantity E, [E[. | ) = 1,,] − E[. | ) = 0,,]].
This allows us to get sensitivity curves that allow us to know how

robust conclusions like “E, [E[. | ) = 1,,] − E[. | ) = 0,,]] = 25 is

positive, so � is likely positive” are to unobserved confounding. We plot

such relevant contours of � in in Figure 8.5b.
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(a) Contours of confounding bias
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(b) Contours of the true ATE �, given that

E, [E[. | ) = 1,,] − E[. | ) = 0,,]] = 25

.

Figure 8.5: Contour plots for sensitivity where the x-axis for both is
1

D
and the y-axis is �D . There is a color-coded correspondence between

the curves in the upper right of Figure 8.5b and the curves in Figure 8.5
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Binary Outcome’

[63]: Imbens (2003), ‘Sensitivity to Exo-

geneity Assumptions in Program Evalua-

tion’

16
Imbens [63] is the first to introduce con-

tour plots like the ones in our Figure 8.5.

[64]: Cinelli and Hazlett (2020), ‘Making

sense of sensitivity: extending omitted

variable bias’

[65]: Veitch and Zaveri (2020), Sense and
Sensitivity Analysis: Simple Post-Hoc Analy-
sis of Bias Due to Unobserved Confounding

[66]: Liu et al. (2013), ‘An introduction to

sensitivity analysis for unobserved con-

founding in nonexperimental prevention

research’

[67]: Rosenbaum (2002), Observational
Studies
[68]: Rosenbaum (2010), Design of Observa-
tional Studies
[69]: Rosenbaum (2017), Observation and
Experiment

[70]: Franks et al. (2019), ‘Flexible Sensi-

tivity Analysis for Observational Studies

Without Observable Implications’

[71]: Yadlowsky et al. (2020), Bounds on the
conditional and average treatment effect with
unobserved confounding factors
[72]: Vanderweele and Arah (2011), ‘Bias

formulas for sensitivity analysis of unmea-

sured confounding for general outcomes,

treatments, and confounders’

[73]: Ding and VanderWeele (2016), ‘Sen-

sitivity Analysis Without Assumptions’

In the example we depict in Figure 8.5, the figure tells us that the green

curve (third from the bottom/left) indicates how strong the confounding

would need to be in order to completely explain the observed association.

In other words, ( 1

D
, �D) would need be large enough to fall on the green

curve or above in order for the true ATE � to be zero or the opposite sign

of E, [E[. | ) = 1,,] − E[. | ) = 0,,]] = 25.

8.2.2 More General Settings

We consider a simple linear setting in Section 8.2.1 in order to easily

convey the important concepts in sensitivity analysis. However, there

is existing that allows us to do sensitivity analysis in more general

settings.

Say we are in the common setting where ) is binary. This is not the case

in the previous section (see Equation 8.61 ). Rosenbaum and Rubin [62]

and Imbens [63]
16
consider a simple binary treatment setting with binary

* by just putting a logistic sigmoid function around the right-hand side

of Equation 8.61 and using that for the probability of treatment instead

of the actual value of treatment:

%() = 1 | ,,*) :=
1

1 + exp(−(F, + D*))
(8.78)

No Assumptions on ) or * Fortunately, we can drop a lot of the

assumptions that we’ve seen so far. Unlike the linear form that we

assumed for ) in Section 8.2.1 and the linearish form that Rosenbaum

and Rubin [62] and Imbens [63] assume, Cinelli and Hazlett [64] develop

a method for sensitivity analysis that is agnostic to the functional form

of ). Their method also allows for* to be non-binary and for* to be a

vector, rather than just a single unobserved confounder.

Arbitrary Machine Learning Models for Parametrization of ) and .
Recall that all of the estimators that we considered in Chapter 7 allowed

us to plug in arbitrary machine learning models to get model-assisted

estimators. Itmight be attractive to have an analogous option in sensitivity

analysis, potentially using the exact same models for the conditional

outcome model � and the propensity score 4 that we used for estimation.

And this is exactly what Veitch and Zaveri [65] give us. And they

are even able to derive a closed-form expression for confounding bias,

assuming the models we use for � and 4 are well-specified, something

that Rosenbaum and Rubin [62] and Imbens [63] didn’t do in their simple

setting.

Holy Shit; There Are a Lot of Options Although we only highlighted

a few options above, there are many different approaches to sensitivity

analysis, and people don’t agree on which ones are best. This means that

sensitivity analysis is an active area of current research. See Liu et al.

[66] for a review of methods that preceeded 2013. Rosenbaum is another

key figure in sensitivity analysis with his several different approaches

[67–69]. Here is a non-exhaustive list of a few other flexible sensitivity

analysis methods that you might be interested in looking into: Franks

et al. [70], Yadlowsky et al. [71], Vanderweele and Arah [72], and Ding

and VanderWeele [73].



Instrumental Variables 9
9.1 What is an Instrument? . . 86
9.2 No Nonparametric Identifi-

cation of the ATE . . . . . . 87
9.3 Warm-Up: Binary Linear Set-

ting . . . . . . . . . . . . . . . 87
9.4 Continuous Linear Setting 88
9.5 Nonparametric Identifica-

tion of Local ATE . . . . . . 90
NewPotential Notationwith
Instruments . . . . . . . . . 90

Principal Stratification . . . 90
Local ATE . . . . . . . . . . . 91

9.6 More General Settings for
ATE Identification . . . . . 94

How can we identify causal effects when we are in the presence of

unobserved confounding?Onepopularway is to find anduse instrumental
variables. An instrument (instrumental variable) / has three key qualities.

It affects on treatment ), it affects . only through ), and the effect of

/ on . is unconfounded. We depict these qualities in Figure 9.1. These

qualities allow us to use / to isolate the causal association flowing from

) to .. The intuition is that changes in / will be reflected in ) and lead

to corresponding changes in.. And these specifically /-focused changes

are unconfounded (unlike the changes to ) induced by the unobserved

confounder *), so they allow us to isolate the causal association that

flows from ) to ..

*

) .

/

Figure 9.1: Graph where* is an unobserved confounder of the effect of ) on . and / is an

instrumental variable.

9.1 What is an Instrument?

There are three main assumptions that must be satisfied for a variable /

to be considered an instrument. The first is that / must be relevant in

the sense that it must influence ).

Assumption 9.1 (Relevance) / has a causal effect on )

Graphically, the relevance assumption corresponds to the existence of an

active edge from / to ) in the causal graph. The second assumption is

known as the exclusion restriction.

Assumption 9.2 (Exclusion Restriction) / causal effect on . is fully
mediated by )

This assumption is known as the exclusion restriction because it excludes

/ from the structural equation for . and from any other structural

equations that would make causal association flow from / to . without

going through ). Graphically, this means that we’ve excluded enough

potential edges between variables in the causal graph so that all causal

paths from / to . go through ). Finally, we assume that the causal effect

of / on . is unconfounded:
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*

) .

/

Figure 9.2: Graph where * is an unob-

served confounder of the effect of ) on .
and / is an instrumental variable.

[18]: Pearl (2009), Causality

Assumption 9.3 (Instrumental Unconfoundedness) There are no back-
door paths from / to ..

Conditional Instruments We phrased Assumption 9.3 as uncondi-

tional unconfoundedness, but all the math for instrumental variables still

works if we have unconfoundedness conditional on observed variables as

well. We just have to make sure we condition on those relevant variables.

In this case, you might see / referred to as a conditional instrument.

9.2 No Nonparametric Identification of the ATE

You might be wondering “if instrumental variables allow us to identify

causal effects, then why didn’t we see them back in Chapter 6 Non-

parametric Identification?” The answer is that instrumental variables

don’t nonparametrically identify the causal effect. We have nonparametric

identification when we don’t have to make any assumptions about the

parametric form.With instrumental variables,wemustmake assumptions

about the parametric form (e.g. linear) to identify causal effects.

We saw the following useful necessary condition for nonparametric

identification in Section 6.3: For each backdoor path from ) to any child

that is an ancestor of ., it is possible to block that path [18, p. 92]. And

we can see in Figure 9.2 that there is a backdoor path from ) to . that

cannot be blocked: ) ← * → .. So this necessary condition tells us that

we can’t use the instrument / to nonparametrically identify the effect of

) on ..

9.3 Warm-Up: Binary Linear Setting

As a warm-up, we’ll start in the setting where ) and / are binary and

where we make the parametric assumption that . is a linear function of

) and* :

Assumption 9.4 (Linear Outcome)

. := �) + D* (9.1)

The fact that / doesn’t appear in Equation 9.1 is a consequence of the

exclusion restriction (Assumption 9.2).

Then, with this assumption in mind, we’ll try to identify the causal effect

�. Because we have the intuition that / will be useful for identifying

the effect of ) on ., we’ll start with the associational difference for the

/-. relationship: E[. | / = 1] − E[. | / = 0]. By immediately applying

Assumption 9.4, we have the following:

E[. | / = 1] − E[. | / = 0] (9.2)

= E[�) + D* | / = 1] − E[�) + D* | / = 0] (9.3)
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[74]: Wald (1940), ‘The Fitting of Straight

Lines if Both Variables are Subject to Error’

Active reading exercise: Where did we use

each of Assumptions 9.1 to 9.4 in the above

derivation of Equation 9.7.

*

) .

/

�

I

Figure 9.3: Graph where * is an unob-

served confounder of the effect of ) on .
and / is an instrumental variable.

Using linearity of expectation and rearranging a bit:

= � (E[) | / = 1] − E[) | / = 0]) + D (E[* | / = 1] − E[* | / = 0])
(9.4)

Now, we use the instrumental unconfoundedness assumption (Assump-

tion 9.3). This means that / and* are independent, which allows us to

get rid of the* term:

= � (E[) | / = 1] − E[) | / = 0]) + D (E[*] − E[*]) (9.5)

= � (E[) | / = 1] − E[) | / = 0]) (9.6)

Then, we can solve for � to get the Wald estimand:

Proposition 9.1

� =
E[. | / = 1] − E[. | / = 0]
E[) | / = 1] − E[) | / = 0] (9.7)

Because of Assumption 9.1, we know that the denominator is non-zero,

so the right-hand side isn’t undefined. Then, we just plug in empirical

means in place of these conditional expectations to get the Wald estimator
[74]:

�̂ =

1

=1

∑
8:I8=1

.8 − 1

=0

∑
8:I8=0

.8

1

=1

∑
8:I8=1

)8 − 1

=0

∑
8:I8=0

)8
(9.8)

where =1 is the number of samples where / = 1 and =0 is the number of

samples where / = 0.

Causal Effects as Multiplying Path Coefficients When the structural

equations are linear, you can think of the causal association flowing from

a variable � to a variable � as the product of the coefficients along the

directed path from � to �. If there are multiple paths, you just sum the

causal associations along all those paths. However, we don’t have direct

access to the causal association. Rather, we can measure total association,

and unblocked backdoor paths also contribute to total association, which

is why E[. | ) = 1] − E[. | ) = 0] ≠ �. So how can we identify the

effect of ) on . in Figure 9.3? Because there are no backdoor paths from

the instrument / to ., we can trivially identify the effect of / on .:

E[. | / = 1] − E[. | / = 0] = I�. Similarly, we can identify the effect

of the instrument on ): E[) | / = 1] − E[) | / = 0] = I . Then, we can

divide the effect of / on . by the effect of the / on ) to identify �
(
I�
I

)
.

And this quotient is exactly the Wald estimand in Proposition 9.1.

9.4 Continuous Linear Setting

We’ll now consider the setting where ) and / are continuous, rather

than binary. We’ll still assume the linear form for . (Assumption 9.4),

which means that the causal efffect of ) on . is �. In the continuous

setting, we get the natural continuous analog of the Wald estimand:
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Active reading exercise: Where did we

use the exclusion restriction assumption

(Assumption 9.2) in this proof?

*

) .

/

Figure 9.4: Graph where * is an unob-

served confounder of the effect of ) on .
and / is an instrumental variable.

*

)̂ .

/

Figure 9.5: Augmented version of Fig-

ure 9.4, where ) is replaced with )̂ =

Ê[) | /], which doesn’t depend on* , so

there it no longer has an incoming edge

from* .

Proposition 9.2

� =
Cov(., /)
Cov(), /) (9.9)

Proof. Just as we started with E[. | / = 1]−E[. | / = 0] in the previous

section, here, we’ll start with the continuous analog Cov(., /). We start

with a classic covariance identity:

Cov(., /) = E[./] − E[.]E[/] (9.10)

Then, applying the linear outcome assumption (Assumption 9.4):

= E[(�) + D*)/] − E[�) + D*]E[/] (9.11)

Distributing and rearranging:

= �E[)/] + DE[*/] − �E[)]E[/] − DE[*]E[/] (9.12)

= � (E[)/] − E[)]E[/]) + D (E[*/] − E[*]E[/]) (9.13)

Now, we see that we can apply the same covariance identity again:

= �Cov(), /) + DCov(*, /) (9.14)

And Cov(*, /) = 0 by the instrumental unconfoundedness assumption

(Assumption 9.3):

= �Cov(), /) (9.15)

Finally, we solve for �:

� =
Cov(., /)
Cov(), /) (9.16)

where the relevance assumption (Assumption 9.1) tells us that the de-

nominator is non-zero.

This leads us to the following natural estimator, similar to the Wald

estimator:

�̂ =
Ĉov(., /)
Ĉov(), /)

(9.17)

Another equivalent estimator is what’s known as the two-stage least squares
estimator (2SLS). The two stages are as follows:

1. Linearly regress ) on / to estimate E[) | /]. This gives us the

projection of ) onto /: )̂.

2. Linearly regress . on )̂ to estimate E[. | )̂]. Obtain our estimate �̂
as the fitted coefficient in front of )̂.

There is helpful intuition that comes with the 2SLS estimator. To see this,

start with the canonical instrumental variable graph we’ve been using

(Figure 9.4). In stage one, we are projecting ) onto / to get )̂ as a function

of only /: )̂ = Ê[) | /]. Then, imagine a graph where ) is replaced with

)̂ (Figure 9.5). Because )̂ isn’t a function of* , we can think of removing

the* → )̂ edge in this graph. Now, because there are no backdoor paths
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[7]: Hernán and Robins (2020), Causal In-
ference: What If

from )̂ to ., we can get that association is causation in stage two, where

we simply regress . on )̂ to estimate the causal effect. Note: We can also

use 2SLS in the binary setting we discussed in Section 9.3.

9.5 Nonparametric Identification of Local ATE

The problemwith the previous two sections is that we’vemade the strong

parametric assumption of linearity (Assumption 9.4). For example, this

assumption requires homogeneity (that the treatment effect is the same

for every unit). There are other variants that encode the homogeneity

assumption (see, e.g., Hernán and Robins [7, Section 16.3]), and they

are all strong assumptions. Ideally, we’d be able to use instrumental

variables for identification without making any parametric assumptions

such as linearity or homogeneity. And we can. We just need to settle for

a more specific causal estimand than the ATE and swap the linearity

assumption out for a new assumption. We will do this in the binary

setting, so both ) and / are binary. Before we can do that, we must define

a bit of new notation in Section 9.5.1 and introduce principal stratification

in Section 9.5.2.

9.5.1 New Potential Notation with Instruments

Just like we use .(1) , .() = 1) to denote the potential outcome we

would observe if we were to take treatment and .(0) , .() = 0) to
denote the potential outcome we would observe if we were to not take

treatment, we will define similar potential notation with instruments.

We’ll think of the instrument / as encouragement for the treatment, so if

we have / = 1, we’re encouraged to take the treatment, and if we have

/ = 0, we’re encourage to not take the treatment. Let )(1) , )(/ = 1)
denote the treatment we would take if we were to get instrument value 1.

Similarly, let )(0) , )(/ = 0) denote the treatment we would take if we

were to get instrument value .

Then, we have the same for potential outcomes where we’re intervening

on the instrument, rather than the treatment: .(/ = 1) denotes the

outcome we would observe if we were to be encouraged to take the

treatment and .(/ = 0) denotes the outcome we would observe if we

were to be encouraged to not take the treatment.

9.5.2 Principal Stratification

We will segment the population into four principal strata, based on the

relationship between the encouragement / and the treatment taken ).

There are four strata because there is one for each combination of the

values the binary variables / and ) can take on.

Definition 9.1 (Principal Strata)

1. Compliers - always take the treatment that they’re encouraged to take.
Namely, )(1) = 1 and )(0) = 0.
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*

) .

/

Figure 9.6:Causal graph for the compliers

and defiers.

*

) .

/

Figure 9.7: Causal graph for the always-

takers and never-takers.

2. Always-takers - always take the treatment, regardless of encouragement.
Namely, )(1) = 1 and )(0) = 1.

3. Never-takers - never take the treatment, regardless of encouragement.
Namely, )(1) = 0 and )(0) = 0.

4. Defiers - always take the opposite treatment of the treatment that they
are encouraged to take. Namely, )(1) = 0 and )(0) = 1.

Different CausalGraphs Importantly, these strata have different causal

graphs. While the treatment that the compliers and defiers take depends

on the encouragement (instrument), the treatment that the always-takers

and never-takers take does not. Therefore, the compliers and defiers

have the normal causal graph (Figure 9.6), whereas the always-takers

and never-takers have the same causal graph but with the /→ ) edge

removed (Figure 9.7). This means that the causal effect of / on ) is

zero for always-takers and never-takers. Then, because of the exclusion

restriction, this means that the causal effect of / on . is zero for the

always-takers and never-takers. This will be important for the upcoming

derivation.

Can’t Identify Stratum Given some observed value of/ and), we can’t

actually identify which stratum we’re in. There are four combinations of

the binary variables / and ); for each of these combinations, we’ll note

thatmore than one stratum is compatiblewith the observed combinations

of values.

1. / = 0, ) = 0. Compatible strata: compliers or never-takers

2. / = 0, ) = 1. Compatible strata: defiers or always-takers

3. / = 1, ) = 0. Compatible strata: defiers or never-takers

4. / = 1, ) = 1. Compatible strata: compliers or always-takers

Active reading exercise: Ensure that you

follow why these are the compatible strata

for each of these combinations of observed

values.

This means that we can’t identify if a given unit is a complier, a defier, an

always-taker, or a never-taker.

9.5.3 Local ATE

Although we won’t be able to use instrumental variables to nonpara-

metrically identify the ATE in the presence of unobserved confounding

(Section 9.2), we will be able to nonparametrically identify what’s known

as the local ATE. The local average treatment effect (LATE) is also known

as the complier average causal effect (CACE), as it is the ATE among the

compliers.

Definition 9.2 (Local Average Treatment Effect (LATE) / Complier

Average Causal Effect (CACE))

E[.() = 1) − .() = 0) | )(/ = 1) = 1, )(/ = 0) = 0] (9.18)

To identify the LATE, although we will no longer need the linearity as-

sumption (Assumption 9.4), we will need to introduce a new assumption

known as monotonicity.

Assumption 9.5 (Monotonicity)

∀8 , )8(/ = 1) ≥ )8(/ = 0) (9.19)
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Monotonicity means that if we are encouraged to take the treatment

(/ = 1), we are either more likely or equally likely to take the treatment

thanwewould be if wewere encouraged to not take the treatment (/ = 0).

Importantly, this means that we are assuming that there are no defiers.

This is because the compliers satisfy )(1) > )(0), the always-takers

and never-takers satisfy )(1) = )(0), but the defiers don’t satisfy either

of these; among the defiers, )(1) < )(0), which is a violation of the

monotonicity assumption.

Compliers: )(1) = 1, )(0) = 0

Always-takers: )(1) = 1, )(0) = 1

Never-takers: )(1) = 0, )(0) = 0

Defiers: )(1) = 0, )(0) = 1

We’ve now introduced the key concepts of principal strata and the

monotonicity assumption. Importantly, we saw that the causal effect of /

on . is zero among the always-takers and never-takers (Section 9.5.2),

and we just saw that monotonicity assumption implies that there are no

defiers. With this in mind, we are now ready to derive the nonparametric

identification result for the LATE estimand.

Theorem 9.3 (LATE Nonparametric Identification) Given that / is an
instrument, / and ) are binary variables, and that monotonicity holds, the
following is true:

E[.(1) − .(0) | )(1) = 1, )(0) = 0] = E[. | / = 1] − E[. | / = 0]
E[) | / = 1] − E[) | / = 0]

(9.20)

Proof. Because we’re interested in the causal effect of ) on. and because

know that we’ll use the instrument /, we’ll start with the causal effect of

/ on . and decompose it into weighted stratum-specific causal effects

using the law of total probability:

E[.(/ = 1) − .(/ = 0)]
= E[.(/ = 1) − .(/ = 0) | )(1) = 1, )(0) = 0]%()(1) = 1, )(0) = 0)
+ E[.(/ = 1) − .(/ = 0) | )(1) = 0, )(0) = 1]%()(1) = 0, )(0) = 1)
+ E[.(/ = 1) − .(/ = 0) | )(1) = 1, )(0) = 1]%()(1) = 1, )(0) = 1)
+ E[.(/ = 1) − .(/ = 0) | )(1) = 0, )(0) = 0]%()(1) = 0, )(0) = 0)

(9.21)

The first term correponds to the compliers, the second term corresponds

to the the defiers, the third term corresponds to the always-takers, and the

last term corresponds to the never takers. Aswe discussed in Section 9.5.2,

the causal effect of / on . among the always-takers and never-takers is

zero, so we can remove those terms.

= E[.(/ = 1) − .(/ = 0) | )(1) = 1, )(0) = 0]%()(1) = 1, )(0) = 0)
+ E[.(/ = 1) − .(/ = 0) | )(1) = 0, )(0) = 1]%()(1) = 0, )(0) = 1)

(9.22)

Because we’ve made the monotonicity assumption, we know that there

are no defiers (%()(1) = 0, )(0) = 1) = 0), so the defiers term is also zero.

= E[.(/ = 1) − .(/ = 0) | )(1) = 1, )(0) = 0]%()(1) = 1, )(0) = 0)
(9.23)

Now, if we solve for this effect of / on . among the compliers, we get
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the following:

E[.(/ = 1) − .(/ = 0) | )(1) = 1, )(0) = 0] = E[.(/ = 1) − .(/ = 0)]
%()(1) = 1, )(0) = 0)

(9.24)

And because these are the compliers, people who will take whichever

treatment they are encouraged to take, .(/ = 1) and .(/ = 0) are really
equal to .() = 1) and .() = 0), respectively, so we can change the

left-hand side of Equation 9.24 to the LATE, the causal estimand that

we’re trying to identify:

E[.() = 1) − .() = 0) | )(1) = 1, )(0) = 0] (9.25)

=
E[.(/ = 1) − .(/ = 0)]
%()(1) = 1, )(0) = 0) (9.26)

Now, we apply the the instrumental unconfoundedness assumption

(Assumption 9.3) to identify the numerator.

=
E[. | / = 1] − E[. | / = 0]

%()(1) = 1, )(0) = 0) (9.27)

All that’s left is to identify the denominator, the probability of being a

complier. However, we mentioned that we can’t identify the compliers in

Section 9.5.2, so how can we do this? This is where we’ll need to be a bit

clever. We’ll get this probability by taking everyone (probability 1) and

subtracting out the the always-takers and the compliers, since there are

no defiers, due to monotonicity (Assumption 9.5).

=
E[. | / = 1] − E[. | / = 0]

1 − %() = 0 | / = 1) − %() = 1 | / = 0) (9.28)

To understand how we got the above equality, consider that everyone

either has / = 1 or / = 0. We can subtract out all of the never-takers

by removing those that had ) = 0 among the / = 1 subpopulation

(%() = 0 | / = 1)). Similarly, we can subtract out all of the always-takers

by removing those that had ) = 1 among the / = 0 subpopulation

(%() = 1 | / = 0)). We know that this removes all of the never-takers

and always-takers because there are no defiers and because we’ve looked

at both the / = 1 subpopulation and the / = 0 subpopulation. Now, we

just do a bit of manipulation:

=
E[. | / = 1] − E[. | / = 0]

1 − (1 − %() = 1 | / = 1)) − %() = 1 | / = 0)
(9.29)

=
E[. | / = 1] − E[. | / = 0]

%() = 1 | / = 1) − %() = 1 | / = 0) (9.30)

Finally, because ) is a binary variable, we can swap out probabilities of

) = 1 for expectations:

=
E[. | / = 1] − E[. | / = 0]
E[) | / = 1] − E[) | / = 0] (9.31)
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This is exactly the Wald estimand that we saw back in the linear setting

(Section 9.3) in Equation 9.7. However, this time, it is the corresponding

statistical estimand of the local ATE E[.() = 1) − .() = 0) | )(1) =
1, )(0) = 0], also knownas the complier average causal effect (CACE). This

LATE/CACE causal estimand is in contrast to the ATE causal estimand

that we saw in Section 9.3: E[.() = 1) − .() = 0)]. The difference

is that the complier average causal effect is the ATE specifically in the

subpopulation of compliers, rather than the total population. It’s local
(LATE) to that subpopulation, rather than being global over the whole

population like the ATE is. So we’ve seen two different assumptions that

get us to the Wald estimand with instrumental variables:

1. Linearity (or more generally homogeneity)

2. Monotonicity

Problems with LATE/CACE There are a few problems with the Wald

estimand for LATE, though. The first is that monotonicity might not be

satisfied in your setting of interest. The second is that, even ifmonotonicity

is satisfied, you might not be interested in the causal effect specifically

among the compliers, especially because you can’t even identify who the

compliers are (see Section 9.5.2). Rather, the regular ATE is often a more

useful quantity to know.

9.6 More General Settings for ATE
Identification

A common more general setting instrumental variable setting is to

consider that the outcome is generated by a complex function of treatment

and observed covariates plus some additive unobserved confounders:

. := 5 (),,) +* (9.32)

See, for example, Hartford et al. [75] and Xu et al. [76] for using deep

learning to model 5 . See references in those papers for using other

models such as kernel methods to model 5 . In those models and given

that * enters in the structural equation for . additively, you can get

identification with instrumental variables.

Alternatively, we could give up on point identification of causal effects,

instead settle for set identification (partial identification), and use instru-

mental variables to get bounds on causal effects. For more on that, see

Pearl [18, Section 8.2]. Additionally, settling for identifying a set, rather

than a point, allows us to relax the additive noise assumption above in

Equation 9.32. For example, Kilbertus et al. [77] considers the setting

where* doesn’t enter the structural equation for . additively:

. := 5 (),*) (9.33)
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Note: the following chapter is muchmore rough than usual and currently

does not contain as many figures and intuition as the corresponding

lecture.

10.1 Preliminaries

We first introduced the unconfoundedness assumption (Assumption 2.1)

in Chapter 2:

(.(1), .(0)) ⊥⊥ ) (10.1)

Recall that this is equivalent to assuming that there are no unblocked

backdoor paths from ) to . in the causal graph. When this is the case,

we have that association is causation. In other words, it gives us the

following (hopefully familiar) identification of the ATE:

E[.(1) − .(0)] = E[.(1)] − E[.(0)] (10.2)

= E[.(1) | ) = 1] − E[.(0) | ) = 0] (10.3)

= E[. | ) = 1] − E[. | ) = 0] (10.4)

where we used this unconfoundedness in Equation 10.3.

However, the ATE is not the only average causal effect that we might be

interested in. It is often the case that practioners are interested in the ATE

specifically in the treated subpopulation. This is known as the average
treatment effect on the treated (ATT): E[.(1) −.(0) | ) = 1]. We can make a

weaker assumption if we are only interested in the ATT, rather than the

ATE:

.(0) ⊥⊥ ) (10.5)

We only have to assume that .(0) is unconfounded here, rather than that

both .(0) and .(1) are unconfounded. We show this in the following

proof:

E[.(1) − .(0) | ) = 1] = E[.(1) | ) = 1] − E[.(0) | ) = 1] (10.6)

= E[. | ) = 1] − E[.(0) | ) = 1] (10.7)

= E[. | ) = 1] − E[.(0) | ) = 0] (10.8)

= E[. | ) = 1] − E[. | ) = 0] (10.9)

where we used this weaker unconfoundedness in Equation 10.8.

We are generally interested in the ATT estimand with difference-in-

differences, but we will use a different identifying assumption.



10 Difference in Differences 96

10.2 Introducing Time

We will now introduce the time dimension. Using information from the

time dimension will be key for us to get identification without assuming

the usual unconfoundedness. We’ll use � for the variable for time.

Setting As usual, we have a treatment group () = 1) and a control

group () = 0). However, now there is also time, and the treatment group

only gets the treatment after a certain time. So we have some time � = 1

that denotes a time after the treatment has been administered to the

treatment group and some time � = 0 that denotes some time before

the treatment has been administered to the treatment group. Because

the control group never gets the treatment, the control group hasn’t

received treatment at either of time � = 0 or at time � = 1. We will denote

the random variable for potential outcome under treatment C at time

� as .�(C). Then, the causal estimand we’re interested in is the average

difference in potential outcomes after treatment has been administered

(in time period � = 1) in the treatment group:

E[.1(1) − .0(1) | ) = 1] (10.10)

In other words, we’re interested in the ATT after the treatment has been

administered.

10.3 Identification

10.3.1 Assumptions

You can just treat .1 and .0 as two different random variables. So even

though we have a time subscript now, we still have trivial identification

via consistency (recall Assumption 2.5) when the value inside of the

parenthesis for the potential outcome matches the conditioning value for

):

Assumption 10.1 (Consistency) If the treatment is ), then the observed
outcome .� at time � is the potential outcome under treatment ). Formally,

∀�, ) = C =⇒ .� = .�(C) (10.11)

We could write this equivalently as follow:

∀�, .� = .�()) (10.12)

Consistency is what tells us that the causal estimand E[.�(1) | ) =

1] equals the statistical estimand E[.� | ) = 1], and, similarly, that

E[.�(0) | ) = 0] = E[.� | ) = 0]. In contrast, E[.�(1) | ) = 0] and
E[.�(0) | ) = 1] are counterfactual causal estimands, so consistency does

not directly identify these quantities for us. Note: In our derivations

in this chapter, we are also implicitly assuming the no interference

assumption (Assumption 2.4) extended to this setting where we have a

time subscript.
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Regular unconfoundedness:

.(0) ⊥⊥ ) (10.5 revisisted)

Wehavenowarrivedat thedefiningassumptionofdifference-in-differences:

parallel trends. This assumption states that the trend (over time) in the

treatment group would match the trend in the control group (over time)

if the treatment group were not given treatment.

Assumption 10.2 (Parallel Trends)

E[.1(0) − .0(0) | ) = 1] = E[.1(0) − .0(0) | ) = 0] (10.13)

This is like an assumption about unconfoundedness between difference:

(.1(0) − .0(0)) ⊥⊥ ) (10.14)

So you could see this as like the regular unconfoundedness we saw

in Equation 10.5, but where treatment is independent of a difference
of potential outcomes, rather than being independent of the potential

outcome themselves.

Then, we need one final assumption. This is the assumption that the

treatment has no effect on the treatment group before it is administered.

Assumption 10.3 (No Pretreatment Effect)

E[.0(1) − .0(0) | ) = 1] = 0 (10.15)

This assumptionmay seem like it’s obviously true, but that isn’t necessarily

the case. For example, if participants anticipate the treatment, then they

might be able to

10.3.2 Main Result and Proof

Using the assumptions in the previous section, we can show that the

ATT is equal to the difference between the differences across time in

each treatment group. We state this mathematically in the following

proposition.

Active reading exercise: How would you

estimate the statistical estimand on the

right-hand side of Equation 10.16?

Proposition 10.1 (Difference-in-differences Identification) Given consis-
tency, parallel trends, and no pretreatment effect, we have the following:

E[.1(1) − .1(0) | ) = 1]
= (E[.1 | ) = 1] − E[.0 | ) = 1]) − (E[.1 | ) = 0] − E[.0 | ) = 0])

(10.16)

Proof. As usual, we start with linearity of expectation:

E[.1(1) − .1(0) | ) = 1] = E[.1(1) | ) = 1] − E[.1(0) | ) = 1] (10.17)

We can immediately identify the treated potential outcome in the treated

group using consistency

= E[.1 | ) = 1] − E[.1(0) | ) = 1] (10.18)
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1
Parallel trends assumptions (Assump-

tion 10.2):

E[.1(0) | ) = 1] − E[.0(0) | ) = 1]
= E[.1(0) | ) = 0] − E[.0(0) | ) = 0]

(10.13 revisited)

2
No pretreatment effect assumption (As-

sumption 10.3)

E[.0(1) | ) = 1] − E[.0(0) | ) = 1] = 0

(10.15 revisited)

So we’ve identified the first term, but the second term remains to be

identified. To do that, we’ll solve for this term in the parallel trends

assumption:
1

E[.1(0) | ) = 1] = E[.0(0) | ) = 1] + E[.1(0) | ) = 0] − E[.0(0) | ) = 0]
(10.19)

We can use consistency to identify the last two terms:

= E[.0(0) | ) = 1] + E[.1 | ) = 0] − E[.0 | ) = 0]
(10.20)

But the first term is counterfactual. This is where we need the no pre-

treatment effect assumption:
2

= E[.0(1) | ) = 1] + E[.1 | ) = 0] − E[.0 | ) = 0]
(10.21)

Now, we can use consistency to complete the identification:

= E[.0 | ) = 1] + E[.1 | ) = 0] − E[.0 | ) = 0] (10.22)

Now that we’ve identified E[.1(0) | ) = 1], we can plug Equation 10.22

back into Equation 10.18 to complete the proof:

E[.1(1) | ) = 1] − E[.1(0) | ) = 1]
= E[.1 | ) = 1] − (E[.0 | ) = 1] + E[.1 | ) = 0] − E[.0 | ) = 0])

(10.23)

= (E[.1 | ) = 1] − E[.0 | ) = 1]) − (E[.1 | ) = 0] − E[.0 | ) = 0])
(10.24)

10.4 Major Problems

The first major problem with the difference-in-differences methods for

causal effect estimation is that the parallel trends assumption is often not

satisfied. We can try to fix this by controlling for relevant confounders,

and trying to satisfy the controlled parallel trends assumption:

Assumption 10.4 (Controlled Parallel Trends)

E[.1(0) − .0(0) | ) = 1,,] = E[.1(0) − .0(0) | ) = 0,,] (10.25)

This is commonly done in practice, but it still might not be possible to

satisfy this weaker version of the parallel trends assumption. For example,

if there is an interaction term between treatment ) and time � in the

structural equation for ., we will never have parallel trends.

Additionally, the parallel trends assumption is scale-specific. For example,

if we satisfy parallel trends, this doesn’t imply that we satisfy parallel

trends under some transformation of .. The logarithm is one common
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such transformation. This is because the parallel trends assumption

is an assumption about differences, which makes it not fully nonpara-

metric. In this sense, the parallel trends assumption is semi-parametric.

And, similarly, the difference-in-differences method is a semi-parametric

method.
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Throughout this book, we have done causal inference, assumingwe know

the causal graph. What if we don’t know the graph? Can we learn it? As

you might expect, based on this being a running theme in this book, it

will depend on what assumptions we are willing to make. We will refer

to this problem as structure identification, which is distinct from the causal

estimand identification that we’ve seen in the book up until now.

11.1 Independence-Based Causal Discovery

11.1.1 Assumptions and Theorem

Themain assumption we’ve seen that relates the graph to the distribution

is theMarkov assumption. TheMarkov assumption tells us if variables are

d-separated in the graph �, then they are independent in the distribution

% (Theorem 3.1):

- ⊥⊥� . | / =⇒ - ⊥⊥% . | / (3.20 revisited)

Maybe we can detect independencies in the data and then use that

to infer the causal graph. However, going from independencies in the

distribution % to d-separations in the graph � isn’t something that the

Markov assumption gives us (see Equation 3.20 above). Rather, we need

the converse of the Markov assumption. This is known as the faithfulness
assumption.

Assumption 11.1 (Faithfulness)

- ⊥⊥� . | / ⇐= - ⊥⊥% . | / (11.1)

This assumption allows us to infer d-separations in the graph from

independencies in the distribution. Faithfulness, along with the Markov

assumption, actually implies minimality (Assumption 3.2), so it is a

stronger assumption. Faithfulness is a much less attractive assumption

than the Markov assumption because it is easy to think of counterexam-

ples (where two variables are independent in %, but there are unblocked

paths between them in �).

Faithfulness Counterexample Consider � and � in the causal graph

with coefficients in Figure 11.1. We have a violation of faithfulness when

the�→ �→ � path cancels out the�→ � → � path. To concretely see

how this could happen, consider the SCM that this graph represents:

� := � (11.2)

� := �� (11.3)

� := �� + �� (11.4)
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-1

-2

-3

Figure 11.3: Immoralities are in their own

Markov equivalence class.

We can solve for the dependence between � and � by plugging in for �

and � in Equation 11.4 to get the following:

� = (� + ��)� (11.5)

This means that the association flowing from � to � is � + �� in this

example. The two paths would cancel if � = −��, which would make

make � ⊥⊥ �. This violation of faithfulness would incorrectly lead us to

believe that there are no paths between � and � in the graph.

In addition to faithfulness, many methods also assume that there are no

unobserved confounders, which is known as causal sufficiency.

Assumption 11.2 (Causal Sufficiency) There are no unobserved con-
founders of any of the variables in the graph.

Then, under the Markov, faithfulness, causal sufficiency, and acyclicity

assumptions, we can partially identify the causal graph. We can’t com-

pletely identify the causal graph because different graphs correspond

to the same set of independencies. For example, consider the graphs in

Figure 11.2.

-1 -2 -3

(a) Chain directed to the right

-1 -2 -3

(b) Chain directed to the left

-2

-1 -3

(c) Fork

Figure 11.2: Three Markov equivalent graphs

Although these are all distinct graphs, they correspond to the same set

of independence/dependence assumptions. Recall from Section 3.5 that

-1 ⊥⊥ -3 | -2 in distributions that areMarkovwith respect to any of these

three graphs in Figure 11.2. We also saw that minimality told us that -1

and-2 aredependent and that-2 and-3 aredependent.And the stronger

faithfulness assumption additionally tells us that in any distributions

that are faithful with respect to any of these graphs, -1 and -3 are

dependent if we don’t condition on -2. So using the presence/absence

of (conditional) independencies in the data isn’t enough to distinguish

these three graphs from each other; these graphs are Markov equivalent;

We say that two graphs are Markov equivalent if they correspond to

the same set of conditional independencies. Given a graph, we refer to

its Markov equivalence class as the set of graphs that encode the same

conditional independencies. Under faithfulness, we are able to identify a

graph from conditional independencies in the data if it is the only graph

in its Markov equivalence class. Any example of a graph that is the only

one in its Markov equivalence class the basic immorality that we show in

Figure 11.3. Recall from Section 3.6 that immoralities are distinct from

the two other basic graphical building blocks (chains and forks) in that

in Figure 11.3, -1 is (unconditionally) independent of -3, and -1 and -3

become dependent if we condition on -2. This means that while the basic

chains and fork in Figure 11.2 are in the same Markov equivalence class,

the basic immorality is by itself in its own Markov equivalence class.
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-1 -2 -3

Figure 11.5: Complete graph.

1
Recall that a complete graph is onewhere

there is an edge connecting every pair of

nodes.

[78]: Verma and Pearl (1990), ‘Equivalence

and Synthesis of Causal Models’

[79]: Frydenberg (1990), ‘The Chain Graph

Markov Property’

2
Active reading exercise: Check that these

graphs encode the same conditional inde-

pendencies.

[80]: Spirtes et al. (2001), Causation, Predic-
tion, and Search

�

�

�

�

�

Figure 11.6: True graph for PC example.

-1 -2 -3

Figure 11.4: Chain/fork skeleton.

We’ve seen that we can identify the causal graph if it’s a basic immorality,

but what else can we identify? We saw that chains and forks are all in

the same Markov equivalence class, but that doesn’t mean that we can’t

get any information from distributions that are Markov and faithful with

respect to those graphs. What do all the chains and forks in Figure 11.2

have in common? They are share the same skeleton. A graph’s skeleton is

the structure we get if we replace all of its directed edges with undirected

edges. We depict the skeleton of a basic chain and a basic fork in

Figure 11.4.

A graph’s skeleton also gives us important conditional independence

information that we can use to distinguish it from graphs with different

skeletons. For example, if we add an -1 → -3 edge to the chain in

Figure 11.2a, we get the complete
1
graph Figure 11.5. In this graph, unlike

in a chain or fork graph, -1 and -3 are not independent when we

condition on -2. So this graph is not in the same Markov equivalence

class as the chains and fork in Figure 11.2. Andwe can see that graphically

by the fact that this graph has a different skeleton than those graphs (this

graph has an additional edge between -1 and -3).

To recap, we’ve pointed out two structural qualities that we can use to

distinguish graphs from each other:

1. Immoralities

2. Skeleton

And it turns out that we can determine whether graphs are in the same or

different Markov equivalence classes using these two structural qualities,

due to a result by Verma and Pearl [78] and Frydenberg [79]:

Proposition 11.1 (Markov Equivalence via Immoral Skeletons) Two
graphs are Markov equivalent if and only if they have the same skeleton and
same immoralities.

This means that, using conditional independencies in the data, we cannot

distinguish graphs that have the same skeletons and same immoralities.

For example, we cannot distinguish the two-node graph - → . from

- ← . using just conditional independence information.
2
But we can

hope to learn the graph’s skeleton and immoralities; this is known

as the essential graph or CPDAG (Completed Partially Directed Acyclic

Graph). One popular algorithm for learning the essential graph is the PC

algorithm.

11.1.2 The PC Algorithm

PC [80] starts with a complete undirected graph and then trims it down

and orients edges via three steps:

1. Identify the skeleton.

2. Identify immoralities and orient them.

3. Orient qualifying edges that are incident on colliders.

We’ll use the true graph in Figure 11.6 as a concrete example as we explain

each of these steps.
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�

�

�

�

�

Figure 11.8: Graph from PC after we’ve

oriented the immoralities.

3
This is called orientation propagation.

�

�

�

�

�

Figure 11.9: Graph from PC after we’ve

oriented edges that would form immoral-

ities if they were oriented in the other

(incorrect) direction.

Identify the Skeleton We discover the skeleton by starting with a

complete graph (Figure 11.7a) and then removing edges - − . where

- ⊥⊥ . | / for some (potentially empty) conditioning set /. So in our

example, we would start with the empty conditioning set and discover

that � ⊥⊥ � (since the only path from � to � in Figure 11.6 is blocked

by the collider �); this means we can remove the � − � edge, which

gives us the graph in Figure 11.7b. Then, we would move to conditioning

sets of size one and find that conditioning on � tells us that every other

pair of variables is conditionally independent given �, which allows

us to remove all edges that aren’t incident on �, resulting in the graph

in Figure 11.7c. And, indeed, this is the skeleton of the true graph in

Figure 11.6. More general PC would continue with larger conditioning

sets, to see if we can remove more edges, but conditioning sets of size

one are enough to discover the skeleton in this example.

�

�

�

�

�

(a) Complete undirected graph that we

start with

�

�

�

�

�

(b) Undirected graph that remains after

removing - − . edges where - ⊥⊥ .

�

�

�

�

�

(c) Undirected graph that remains after

removing - − . edges where - ⊥⊥ . | /

Figure 11.7: Illustration of the process of step 1 of PC, where we start with the complete graph (left) and remove edges until we’ve identified

the skeleton of the graph (right), given that the true graph is the one in Figure 11.6.

Identifying the Immoralities Now for any paths - − / − . in our

working graph where we discovered that there is no edge between - and

. in our previous step, if / was not in the conditioning set that makes

- and . conditionally independent, then we know - − / − . forms

an immortality. In other words, this means that - 6⊥⊥ . | /, which is a

property of an immorality that distinguishes it from chains and forks

(Section 3.6), so we can orient these edges to get - → / ← .. In our

example, this takes us from Figure 11.7c to Figure 11.8.

Orienting Qualifying Edges Incident on Colliders In the final step,

we take advantage of the fact that we might be able to orient more edges

since we know we discovered all of the immoralities in the previous step.

Any edge / −. part of a partially directed path of the form - → / −.,
where there is no edge connecting - and ., can be oriented as /→ ..3

This is because if the true graph has the edge / ← ., we would have

found this in the previous step as that would have formed an immorality

- → /← .. Since we didn’t find that immorality in the previous step,

we know that the true direction is / → .. In our example, this means

we can orient the final two remaining edges, taking us from Figure 11.8

to Figure 11.9. It turns out that in this example, we are lucky that we

can orient all of the remaining edges in this last step, but this is not the

case in general. For example, we discussed that we wouldn’t be able

to distinguish simple chain graphs and simple fork graphs from each

other.
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[80]: Spirtes et al. (2001), Causation, Predic-
tion, and Search

[81]: Richardson (1996), ‘Feedback Models:

Interpretation and Discovery’

[82]: Hyttinen et al. (2013), ‘Discovering

Cyclic Causal Models with Latent Vari-

ables: A General SAT-Based Procedure’

[83]: Hyttinen et al. (2014), ‘Constraint-

Based Causal Discovery: Conflict Resolu-

tion with Answer Set Programming’

[84]: Shah and Peters (2020), ‘The hardness
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of Causal Models’

Dropping Assumptions There are algorithms that allow us to drop

various assumptions. The FCI (Fast Causal Inference) algorithm [80]

works without assuming causal sufficiency (Assumption 11.2). The CCD

algorithm [81] works without assuming acyclicity. And there is various

work on SAT-based causal discovery that allows us to drop both of the

above assumptions [82, 83].

Hardness of Conditional Independence Testing Allmethods that rely

on conditional independence tests such as PC, FCI, SAT-based algorithm,

etc. have an important practical issue associated with them. Conditional

independence tests are hard, and it can sometimes require a lot of data

to get accurate test results [84]. If we have infinite data, this isn’t an issue,

but we don’t have infinite data in practice.

11.1.3 Can We Get Any Better Identification?

We’ve seen that assuming the Markov assumption and faithfulness can

only get us so far; with those assumptions, we can only identify a graph

up to its Markov equivalence class. If we make more assumptions, can

we identify the graph more precisely than just its Markov equivalence

class?

Well, if we are in the case where the distributions are multinomial, we

cannot [85]. Or if we are in the common toy case where the SCMs are

linear with Gaussian noise, we cannot [86]. So we have the following

completeness result due to Geiger and Pearl [86] and Meek [85]:

Theorem 11.2 (Markov Completeness) If we have multinomial distribu-
tions or linear Gaussian structural equations, we can only identify a graph
up to its Markov equivalence class.

What if we don’t have multinomial distributions and don’t have linear

Gaussian SCMs, though?

11.2 Semi-Parametric Causal Discovery

In Theorem 11.2, we saw that, if we are in the linear Gaussian setting,

the best we can do is identify the Markov equivalence class; we cannot

hope to identify graphs that are in non-singleton Markov equivalence

classes. But what if we aren’t in the linear Gaussian setting? Can we

identify graphs if we are not in the linear Gaussian setting? We consider

the linear non-Gaussian noise setting in Section 11.2.2 and the nonlinear
additive noise setting in Section 11.2.3. It turns out that in both of these

settings, we can identify the causal graph. And we don’t have to assume

faithfulness (Assumption 11.1) in these settings.

By considering these settings, we are making semi-parametric assump-

tions (about functional form). If we don’t make any assumptions about

functional form, we cannot even identify the direction of the edge in a

two-node graph. We emphasize this in the next section before moving on

to the semi-parametric assumptions that allow us to identify the graph.
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[14]: Peters et al. (2017), Elements of Causal
Inference: Foundations and Learning Algo-
rithms

11.2.1 No Identifiability Without Parametric
Assumptions

Markov Perspective Consider the two-variable setting, where the two

options of causal graphs are - → . and - ← .. Note that these

two graphs are Markov equivalent. Both don’t encode any conditional

independence assumptions, so both can describe arbitrary distributions

%(G, H). This means that conditional independencies in the data cannot

help us distinguish between - → . and - ← .. Using conditional

independencies, the bestwe cando is discover the corresponding essential

graph - − ..

SCMs Perspective How about if we consider this problem from the

perspective of SCMs; can we somehow distinguish - → . from - ← .

using SCMs? For an SCM, we want to write one variable as a function of

the other variable and some noise term variable. As you might expect,

if we don’t make any assumptions, there exist SCMs with the implied

causal graph - → . and SCMs with the implied causal graph - ← .

that both generate data according to %(G, H).

Proposition 11.3 (Non-Identifiability of Two-Node Graphs) For every
joint distribution %(G, H) on two real-valued random variables, there is an
SCM in either direction that generates data consistent with %(G, H).

Mathematically, there exists a function 5. such that

. = 5.(-,*.) , - ⊥⊥ *. (11.6)

and there exists a function 5- such that

- = 5-(.,*-) , . ⊥⊥ *- (11.7)

where*. and*- are real-valued random variables.

See, e.g., Peters et al. [14, p. 44] for a short proof. Similarly, this non-

identifiability result can be extended to more general graphs that have

more than two variables [see, e.g., 14, p. 135].

However, if we make assumptions about the parametric form of the

SCM, we can distinguish - → . from - ← . and identify graphs more

generally. That’s what we’ll see in the rest of this chapter.

11.2.2 Linear Non-Gaussian Noise

We saw in Theorem 11.2 that we cannot distinguish graphs within the

same Markov equivalence class if the structural equations are linear with

Gaussian noise* . For example, this means that we cannot distinguish

- → . from - ← .. However, if the noise term is non-Gaussian, then

we can identify the causal graph. As usual, we give this key assumption

of non-Gaussianity its own box:

Assumption 11.3 (Linear Non-Gaussian) All structural equations (causal
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mechanisms that generate the data) are of the following form:

. := 5 (-) +* (11.8)

where 5 is a linear function, - ⊥⊥ * , and* is distributed as a Gaussian.

Then, in this linear non-Gaussian setting, we can identify which of

graphs - → . and - ← . is the true causal graph. We’ll first present

the theorem and proof and then get to the intuition.

Theorem 11.4 (Identifiability in Linear Non-Gaussian Setting) In the
linear non-Gaussian setting, if the true SCM is

. := 5 ()) +* , - ⊥⊥ * , (11.9)

then, there does not exist an SCM in the reverse direction

) := 6(.) + *̃ , . ⊥⊥ *̃ , (11.10)

that can generate data consistent with %(G, H).

Proof. We’ll first introduce a important result from Darmois [87] and

Skitovich [88] and Skitovich [88] that we’ll use to prove this theorem:

Theorem 11.5 (Darmois-Skitovich) Let -1 , . . . , -= be independent, non-
degenerate random variables. If there exist coefficients 1 , . . . , = and
�1 , . . . , �= that are all non-zero such that the two linear combinations

� = 1-1 + . . . + =-= and
� = �1-1 + . . . + �=-=

are independent, then each -8 is normally distributed.

We will use the contrapositive of the special case of this theorem for

= = 2 to do almost all of the work for this proof:

Corollary 11.6 If either of the independent random variables -1 or -2 is
non-Gaussian, then there are no linear combinations

� = 1-1 + 2-2 and
� = �1-1 + �2-2

such that � and � are independent (so � and � must be dependent).

Proof Outline With the above corollary in mind, our proof strategy is

to write . and *̃ as linear combinations of - and* . By doing this, we

are effectively mapping our variables in Equations 11.9 and 11.10 onto the

variables in the corollary as follows:. onto�, *̃ onto �,- onto-1, and*

onto-2. Then, we can apply the above corollary of the Darmois-Skitovich

Theorem to have that . and *̃ must be dependent, which violates the

reverse direction SCM in Equation 11.10. We now proceed with the proof.

We already have that we can write . as a linear combination of - and

* , since we’ve assumed the true structural equation in Equation 11.9 is
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Forward model SCM:

. := 5 ()) +* , - ⊥⊥ *
(11.9 revisited)

Backward model SCM:

) := 6(.) + *̃ , . ⊥⊥ *̃
(11.10 revisited)

linear:

. = �- +* (11.11)

Then, to get *̃ as a linear combination of - and* , we take the hypothe-

sized reverse SCM

- = �̃. + *̃ (11.12)

from Equation 11.10, solve for *̃ , and plug in Equation 11.11 for .:

*̃ = - − �̃. (11.13)

= - − �̃(�- +*) (11.14)

= (1 − �̃�)- + �̃* (11.15)

Therefore, we’ve written both . and *̃ as linear combinations of the

independent random variables - and* . This allows us to apply Corol-

lary 11.6 of the Darmois-Skitovish Theorem to get that . and *̃ must be

dependent: . 6⊥⊥ *̃ . This violates the reverse direction SCM:

- := 6(.) + *̃ , . ⊥⊥ *̃ (11.10 revisited)

We’ve given the proof here for just two variables, but it can be extended

to the more general setting with multiple variables (see [89] and [14,

Section 7.1.4]).

Graphical Intuition

When we fit the data in the causal direction, we get residuals that are

independent of the input variable, but when we fit the data in the anti-
causal direction, we get residuals that are dependent on the input variable.

We depict the regression line 5̂ we get if we linearly regress. on) (causal

direction) in Figure 11.10a, andwe depict the regression line 6̂ we get if we

linearly regress ) on . (anti-causal direction) in Figure 11.10b. Just from

these fits, you can see that the forward model (fit in the causal direction)

looks more pleasing than the backward model (fit in the ant-causal

direction).

To make this graphical intuition more clear, we plot the residuals of the

forward model 5̂ (causal direction) and the backward model 6̂ (anti-

causal direction) in Figure 11.11. The residuals in the forward direction

correspond to the following: *̂ = . − 5̂ ()). And the residuals in the

backward direction correspond to the follow:
ˆ̃
* = ) − 6̂(.). As you can

see in Figure 11.11a, the residuals of the forward model look independent

of the input variable ) (on the x-axis). However in Figure 11.10b, the

residuals of the backward model don’t look independent of the input

variable . (on the x-axis) at all. Clearly, the range of the residuals (on the

vertical) changes as we move across values of . (from left to right).
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(a) Causal direction fit: linear fit that results from regressing . on
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(b) Anti-causal direction fit: linear fit that results from regressing

) on ..

Figure 11.10: Linear fits (in both directions) of the linear non-Gaussian data.
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Figure 11.11: Residuals of linear models (in both directions) fit to the linear non-Gaussian data.

[90]: Hoyer et al. (2009), ‘Nonlinear causal

discovery with additive noise models’

[91]: Peters et al. (2014), ‘Causal Discovery

with Continuous Additive Noise Models’

11.2.3 Nonlinear Models

Nonlinear Additive Noise Setting We can also get identifiability of

the causal graph in the nonlinear additive noise setting [90, 91]. This

requires the nonlinear additive noise assumption (below) and other more

technical assumptions that we refer you to Hoyer et al. [90] and Peters

et al. [91] for.

Assumption 11.4 (Nonlinear Additive Noise) All causal mechanisms are
nonlinear where the noise enters additively. Mathematically,

∀8 , -8 := 5 (pa8) +*8 (11.16)

where 5 is nonlinear and pa8 denotes the parents of -8 .

Post-Nonlinear Setting What if you don’t believe that the noise realis-

tically enters additively. This motivates post-nonlinear models, where

there is another nonlinear transformation after adding the noise as in
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Assumption 11.5 below. This setting can also yield identifiability (under

another technical condition). See Zhang and Hyvärinen [92] for more

details.

Assumption 11.5 (Post-Nonlinear)

∀8 , -8 := 6( 5 (pa8) +*8) (11.17)

where 5 is nonlinear and pa8 denotes the parents of -8 .

11.3 Further Resources

We conclude this chapter by pointing you to some relevant resources

for where to start learning more (in addition to the references in this

chapter). These references were also used as inspiration when forming

this chapter. See Eberhardt [93] and Glymour et al. [94] for two great

review articles from people at the frontier of causal discovery research.

And then if you want a whole book on this stuff, Peters et al. [14] wrote a

popular one!
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A.1 Proof of Equation 6.1 from Section 6.1

Claim Given the causal graph is Figure A.1, %(< | do(C)) = %(< | C).

,

") .

Figure A.1: Causal graph where, is un-

observed, sowe cannot block the backdoor

path ) ←, → ..

Proof. We first apply the Bayesian network factorization (Definition 3.1):

%(F, C, <, H) = %(F)%(C | F)%(< | C)%(H | F, <) (A.1)

Next, we apply the truncated factorization (Proposition 4.1):

%(F, <, H | do(C)) = %(F)%(< | C)%(H | F, <) (A.2)

Finally, we marginalize out F and H:∑
F

∑
H

%(F, <, H | do(C)) =
∑
F

∑
H

%(F)%(< | C)%(H | F, <) (A.3)

%(< | do(C)) =
(∑
F

%(F)
)
%(< | C)

(∑
H

%(H | F, <)
)
(A.4)

= %(< | C) (A.5)

A.2 Proof of Propensity Score Theorem (7.1)

Claim (.(1), .(0)) ⊥⊥ ) | , =⇒ (.(1), .(0)) ⊥⊥ ) | 4(,).

Proof. Assuming (.(1), .(0)) ⊥⊥ ) | , , we will prove (.(1), .(0)) ⊥⊥ ) |
4(,) by showing that %() = 1, | .(C), 4(,)) does not depend on .(C),
where .(C) is either potential outcome.

First, because ) is binary, can turn this probability into an expectation:

%() = 1, | .(C), 4(,)) = E[) | .(C), 4(,)] (A.6)

Then, using the law of iterated expectations, we can introduce, :

= E [E[) | .(C), 4(,),,] | .(C), 4(,)] (A.7)
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Because we have now conditioned on all of, and 4(,) is a function of

, , it is redundant, so we can remove 4(,) from the inner expectation:

= E [E[) | .(C),,] | .(C), 4(,)] (A.8)

Now, we apply the unconfoundedness assumption we started with to

remove .(C) from the inner expectation:

= E [E[) | ,] | .(C), 4(,)] (A.9)

Again, using the fact that ) is binary, we can reduce the inner expectation

to %() = 1 | ,) , 4(,), something that is already conditioned on:

= E [%() = 1 | ,) | .(C), 4(,)] (A.10)

= E [4(,) | .(C), 4(,)] (A.11)

= 4(,) (A.12)

Because this does not depend on.(C), we’ve proven that) is independent

of .(C) given 4(,).

A.3 Proof of IPW Estimand (7.18)

Claim Underunconfoundedness andpositivity,E[.(C)] = E
[
1()=C).
%(C |,)

]
.

Proof. We will start with the statistical estimand that we get from the ad-

justment formula (Theorem 2.1). Given unconfoundedness and positivity,

the adjustment formula tells us

E[.(C)] = E[E[. | C ,,]] (A.13)

We’ll assume the variable are discrete to break these expectations into

sums (replace with integrals if continuous):

=
∑
F

(∑
H

H %(H | C , F)
)
%(F) (A.14)

To get %(C | F) in there, we multiply by
%(C |F)
%(C |F) :

=
∑
F

∑
H

H %(H | C , F)%(F) %(C | F)
%(C | F) (A.15)

Then, noticing that %(H | C , F)%(C | F)%(F) is the joint distribution:

=
∑
F

∑
H

H %(H, C, F) 1

%(C | F) (A.16)
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∑
H H %(H, C, F) is nearly

∑
H H %(H) = E[.], but because of ) = C and

, = F are in the probability, the terms of this sum are only non-zero if

) = C and, = F. Therefore, we get the indicator random variable for

this event in the expectation that is over all three random variables (),

, , and .):

=
∑
F

E [1() = C ,, = F).] 1

%(C | F) (A.17)

Now, the

∑
F

1

%(C |F) that remains is a weighted expectation over , .

Integrating this means that because we are nowmarginalizing over, , F

becomes a random variable (,) and the the, = F inside the indicator

becomes redundant. This gives us the following:

= E

[
1() = C).
%(C | ,)

]
(A.18)

Note: For some people, it might be more natural to skip straight from

Equation A.16 to Equation A.18.
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