A Brief Introduction to Causal Inference

Brady Neal

causalcourse.com

Inferring the effects of any treatment/policy/intervention/etc.

Inferring the effects of any treatment/policy/intervention/etc.

Examples:

• Effect of treatment on a disease

Inferring the effects of any treatment/policy/intervention/etc.

Examples:

- Effect of treatment on a disease
- Effect of climate change policy on emissions

Inferring the effects of any treatment/policy/intervention/etc.

Examples:

- Effect of treatment on a disease
- Effect of climate change policy on emissions
- Effect of social media on mental health

Inferring the effects of any treatment/policy/intervention/etc.

Examples:

- Effect of treatment on a disease
- Effect of climate change policy on emissions
- Effect of social media on mental health
- Many more (effect of X on Y)

Motivating example: Simpson's paradox

Correlation does not imply causation

Then, what does imply causation?

Causation in observational studies

Motivating example: Simpson's paradox

Correlation does not imply causation

Then, what does imply causation?

Causation in observational studies

New disease: COVID-27

New disease: COVID-27

Treatment T: A (0) and B (1)

New disease: COVID-27

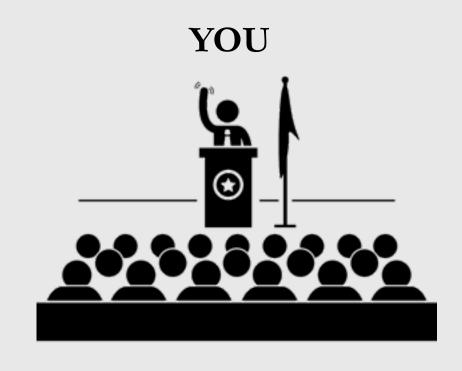
Treatment T: A (0) and B (1)



New disease: COVID-27

Treatment T: A (0) and B (1)

Condition C: mild (0) or severe (1)

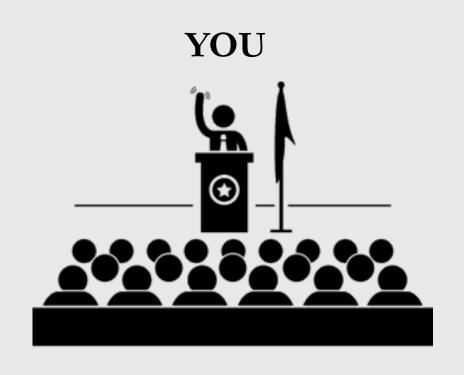


New disease: COVID-27

Treatment T: A (0) and B (1)

Condition C: mild (0) or severe (1)

Outcome Y: alive (0) or dead (1)



		Total
when't	A	16% (240/1500)
- Treatine nt	В	19% (105/550)
		$\mathbb{E}[Y T]$

		Mild	Severe	Total
- Treatment	A	15% (210/1400)	30% (30/100)	16% (240/1500)
Treatr	В	10% (5/50)	20% (100/500)	19% (105/550)
		$\mathbb{E}[Y T,C=0]$	$\mathbb{E}[Y T,C=1]$	$\mathbb{E}[Y T]$

Condition

		Mild	Severe	Total
- Treatment	A	15% (210/1400)	30% (30/100)	16% (240/1500)
reali	В	10% (5/50)	20% (100/500)	19% (105/550)
		$\mathbb{E}[Y T C=0]$	$\mathbb{E}[Y T C=1]$	$\mathbb{E}[Y T]$

$$\mathbb{E}[Y|T, C=0] \qquad \mathbb{E}[Y|T, C=1] \qquad \qquad \mathbb{E}[Y|T]$$

$$\frac{1400}{1500} (0.15) + \frac{100}{1500} (0.30) = 0.16$$

$$\frac{50}{550} (0.10) + \frac{500}{550} (0.20) = 0.19$$

$$\frac{50}{550} (0.10) + \frac{500}{550} (0.20) = 0.19$$

Brady Neal

		Mild	Severe	Total
Treatment.	A	15% (210/1400)	30% (30/100)	16% (240/1500)
Treats	В	10% (5/50)	20% (100/500)	19% (105/550)
		$\mathbb{E}[Y T,C=0]$	$\mathbb{E}[Y T,C=1]$	$\mathbb{E}[Y T]$

$$\frac{1400}{1500}(0.15) + \frac{100}{1500}(0.30) = 0.16$$

$$\frac{50}{550}(0.10) + \frac{500}{550}(0.20) = 0.19$$

$$\frac{50}{550} (0.10) + \frac{500}{550} (0.20) = 0.19$$

		Mild	Severe	Total
- Treatment	A	15% (210/1400)	30% (30/100)	16% (240/1500)
Treati	В	10% (5/ <u>50</u>)	20% (100/ <u>500</u>)	19% (105/550)
		$\mathbb{E}[Y T,C=0]$	$\mathbb{E}[Y T,C=1]$	$\mathbb{E}[Y T]$

$$\frac{1400}{1500}(0.15) + \frac{100}{1500}(0.30) = 0.16$$

$$\frac{50}{550}(0.10) + \frac{500}{550}(0.20) = 0.19$$

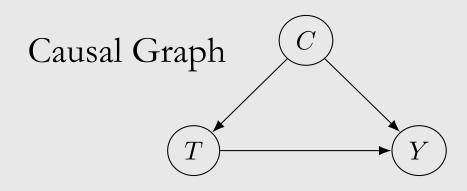
Condition

		Mild	Severe	Total	
agent.	A	15% (210/ <u>1400</u>)	30% (30/100)	16% (240/1500)	$\frac{1400}{1500}(0.15) + \frac{100}{1500}(0.30) = 0.16$
Treatment.	В	10% (5/50)	20% (100/ <u>500</u>)	19% (105/550)	$\frac{50}{550}(0.10) + \frac{500}{550}(0.20) = 0.19$
		$\mathbb{E}[Y T,C=0]$	$\mathbb{E}[Y T,C=1]$	$\mathbb{E}[Y T]$	

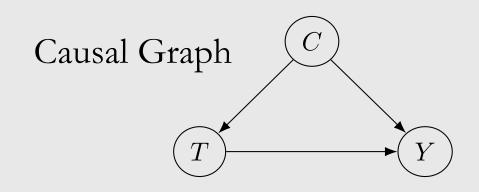
Which treatment should you choose?

		Mild	Severe	Total
Treatment.	A	15% (210/1400)	30% (30/100)	16% (240/1500)
reali	В	10% (5/50)	20% (100/500)	19% (105/550)

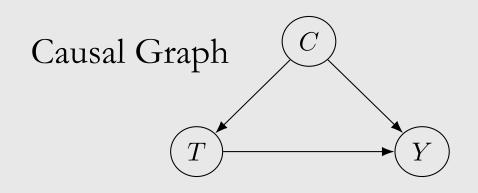
		Mild	Severe	Total
reatment	A	15% (210/1400)	30% (30/100)	16% (240/1500)
real.	В	10% (5/50)	20% (100/500)	19% (105/550)

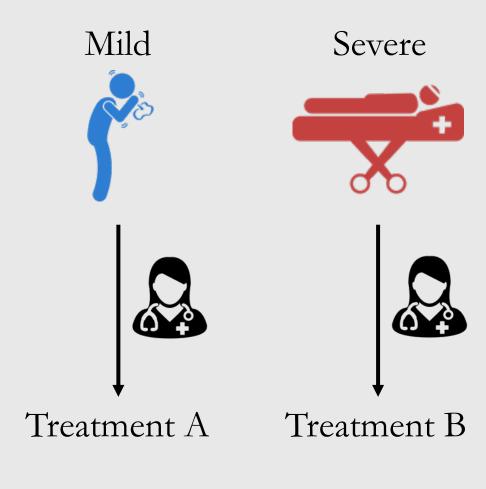


		Mild	Severe	Total
in't	A	15% (210/1400)	30% (30/100)	16% (240/1500)
	В	10% (5/ <u>50</u>)	20% (100/500)	19% (105/550)



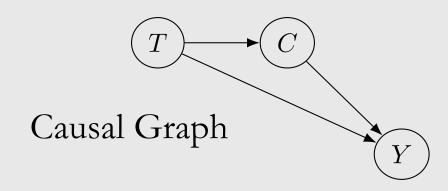
		Mild	Severe	Total
_	A	15% (210/1400)	30% (30/ <u>100</u>)	16% (240/1500)
	В	10% (5/ <u>50</u>)	20% (100/ <u>500</u>)	19% (105/550)



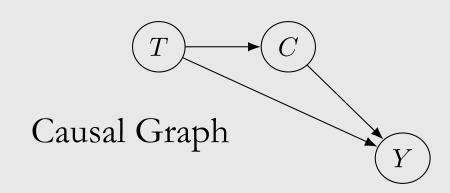


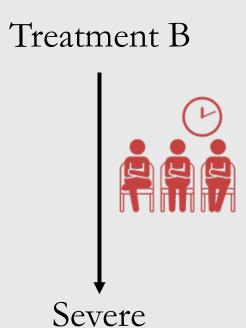
		Mild	Severe	Total
Treatment.	A	15% (210/1400)	30% (30/100)	16% (240/1500)
realing.	В	10% (5/50)	20% (100/500)	19% (105/550)

		Mild	Severe	Total
reatment.	A	15% (210/1400)	30% (30/100)	16% (240/1500)
reali.	В	10% (5/50)	20% (100/500)	19% (105/550)

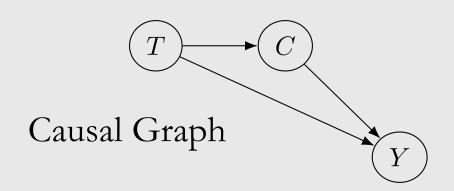


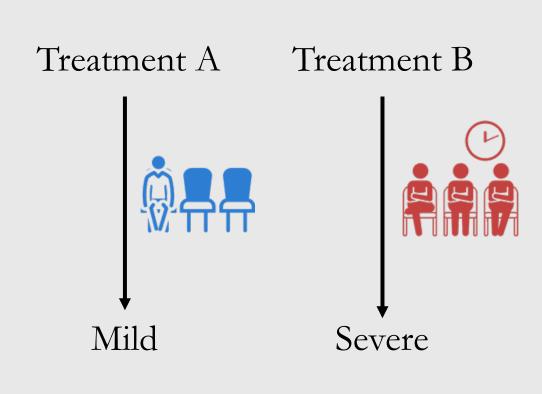
		Mild	Severe	Total
athent	A	15% (210/1400)	30% (30/100)	16% (240/1500)
	В	10% (5/ <u>50</u>)	20% (100/ <u>500</u>)	19% (105/550)





		Mild	Severe	Total
,	A	15% (210/1400)	30% (30/ <u>100</u>)	16% (240/1500)
	В	10% (5/ <u>50</u>)	20% (100/ <u>500</u>)	19% (105/550)



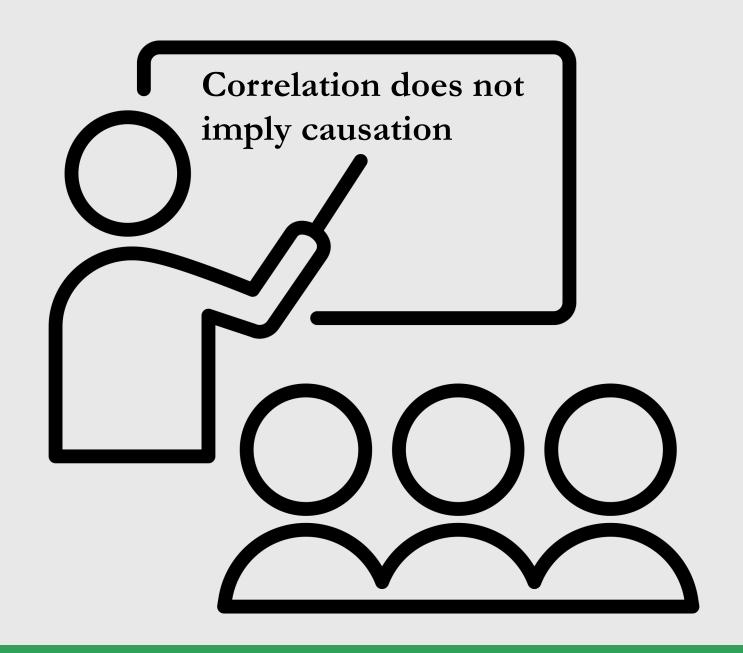


Motivating example: Simpson's paradox

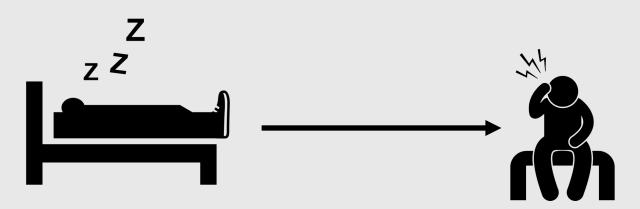
Correlation does not imply causation

Then, what does imply causation?

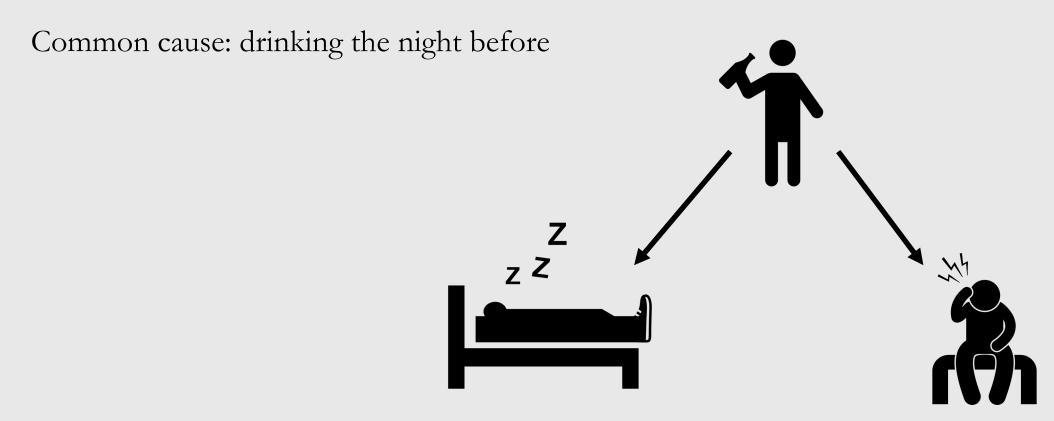
Causation in observational studies



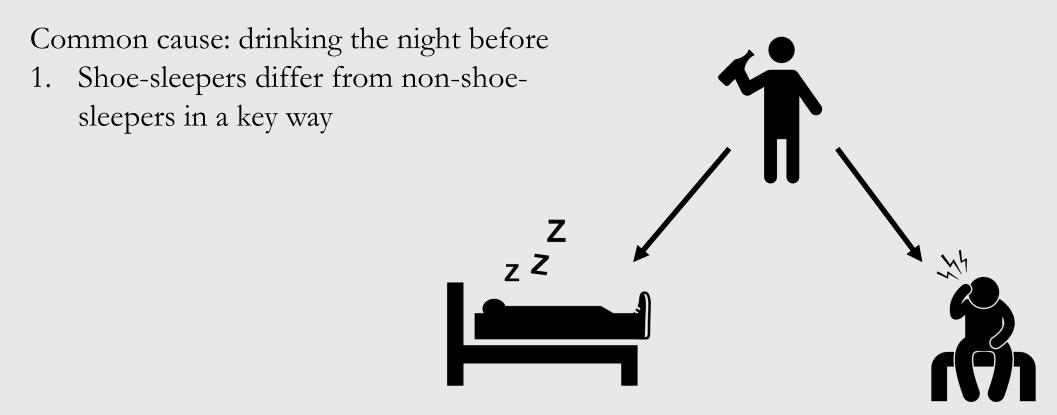
Sleeping with shoes on is strongly correlated with waking up with a headache



Sleeping with shoes on is strongly correlated with waking up with a headache



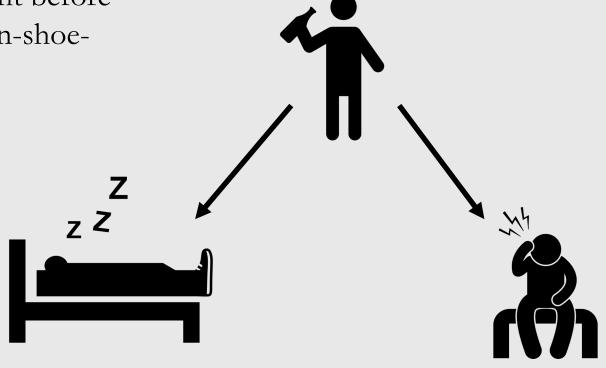
Sleeping with shoes on is strongly correlated with waking up with a headache



Sleeping with shoes on is strongly correlated with waking up with a headache

Common cause: drinking the night before

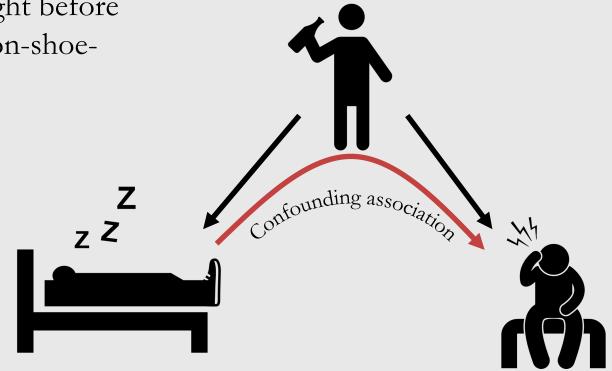
- 1. Shoe-sleepers differ from non-shoe-sleepers in a key way
- 2. Confounding



Sleeping with shoes on is strongly correlated with waking up with a headache

Common cause: drinking the night before

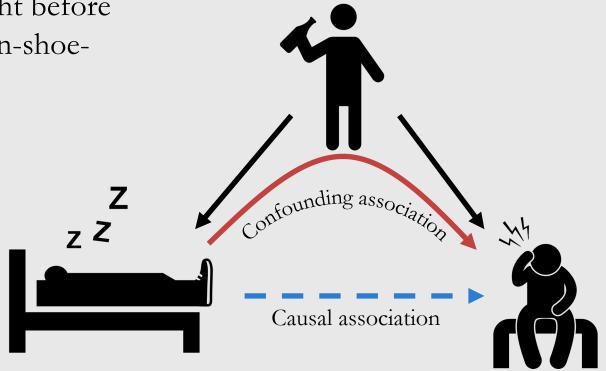
- 1. Shoe-sleepers differ from non-shoe-sleepers in a key way
- 2. Confounding



Sleeping with shoes on is strongly correlated with waking up with a headache

Common cause: drinking the night before

- 1. Shoe-sleepers differ from non-shoesleepers in a key way
- 2. Confounding

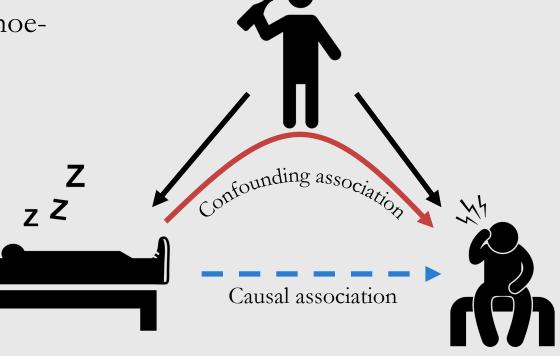


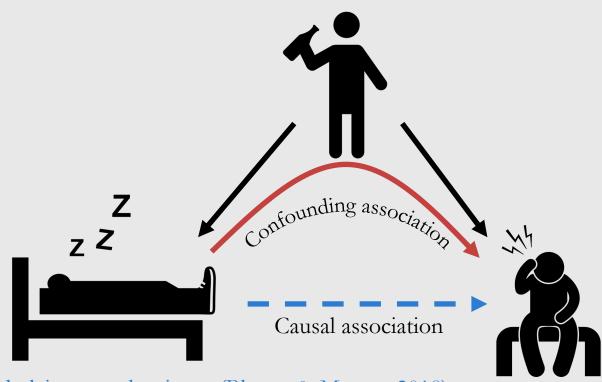
Sleeping with shoes on is strongly correlated with waking up with a headache

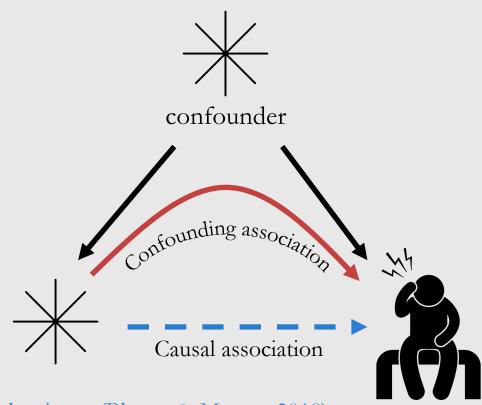
Common cause: drinking the night before

- 1. Shoe-sleepers differ from non-shoesleepers in a key way
- 2. Confounding

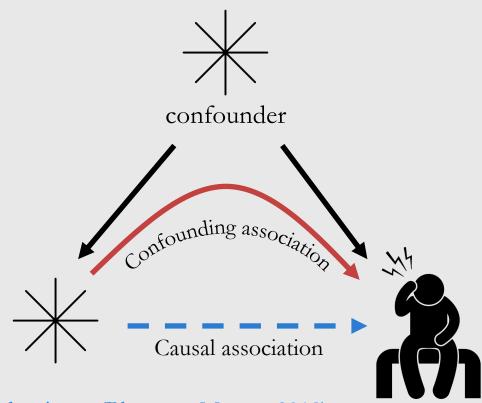
Total association (e.g. correlation): mixture of causal and confounding association



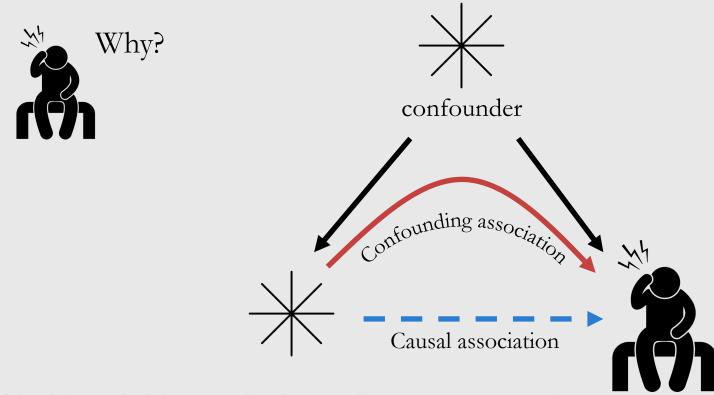




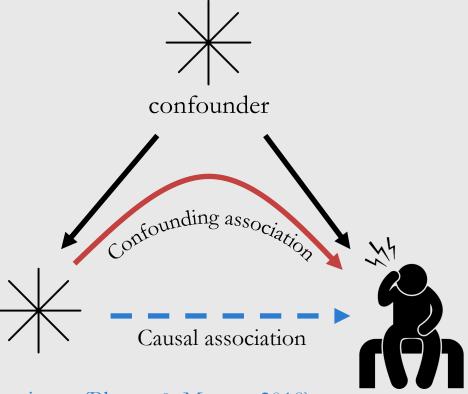
Availability heuristic (another cognitive bias) gives us *



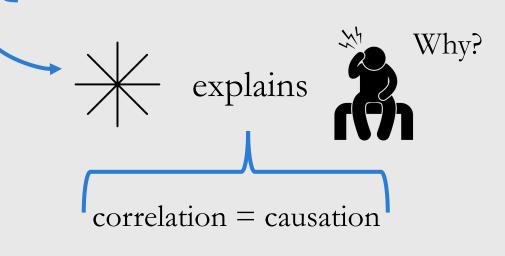
Availability heuristic (another cognitive bias) gives us *

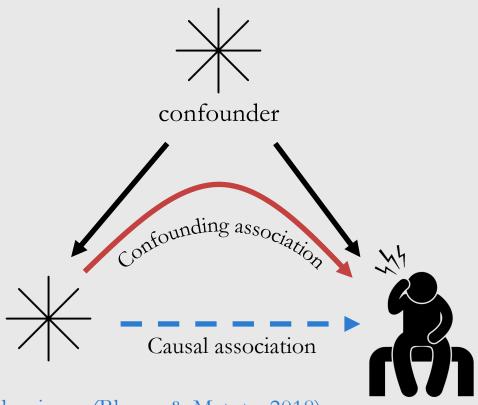


Availability heuristic (another cognitive bias) gives us * Motivated reasoning (another cognitive bias)



Availability heuristic (another cognitive bias) gives us * Motivated reasoning (another cognitive bias)

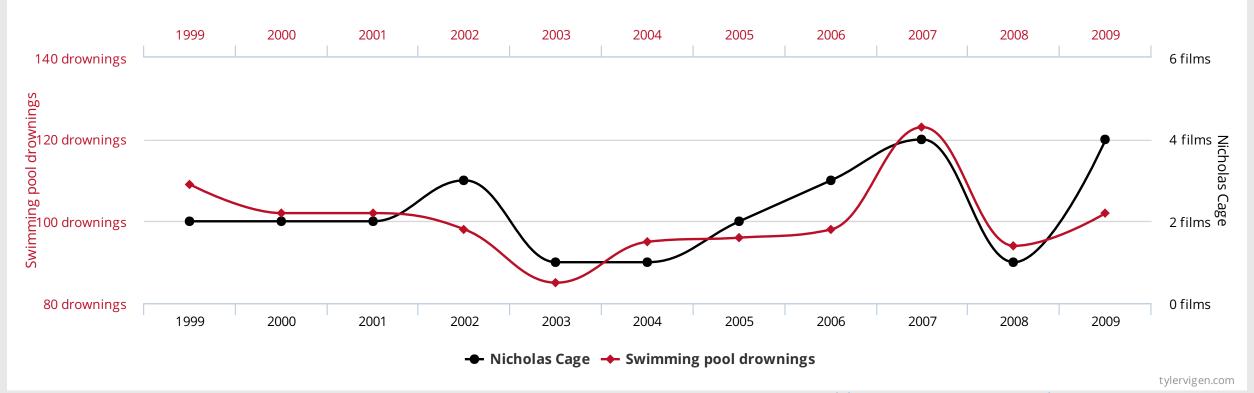




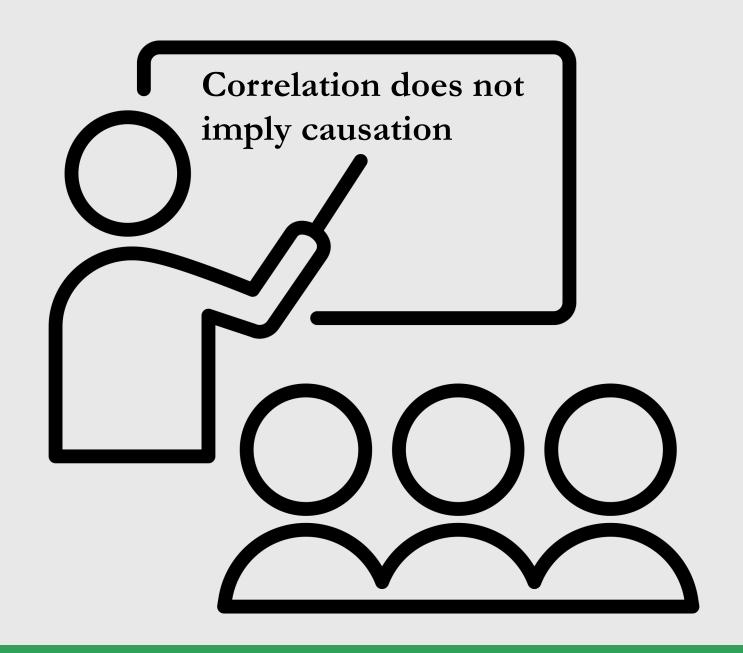
Nicolas Cage drives people to drown themselves

correlates with

Films Nicolas Cage appeared in



https://www.tylervigen.com/spurious-correlations



Then, what does imply causation?

Motivating example: Simpson's paradox

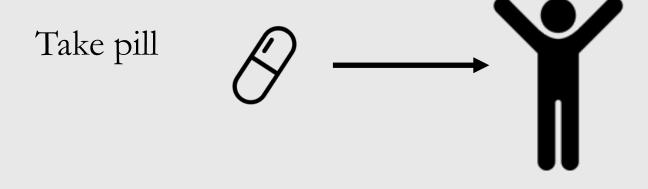
Correlation does not imply causation

Then, what does imply causation?

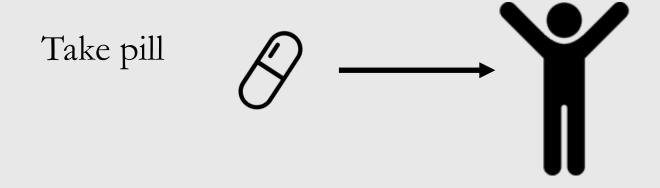
Causation in observational studies

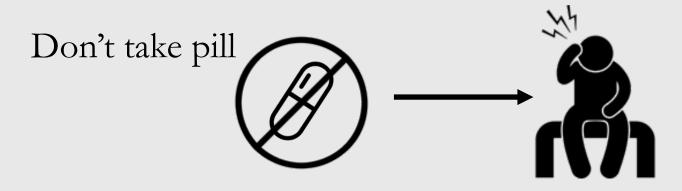
Inferring the effect of treatment/policy on some outcome

Inferring the effect of treatment/policy on some outcome



Inferring the effect of treatment/policy on some outcome

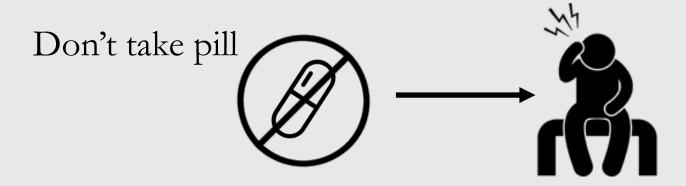




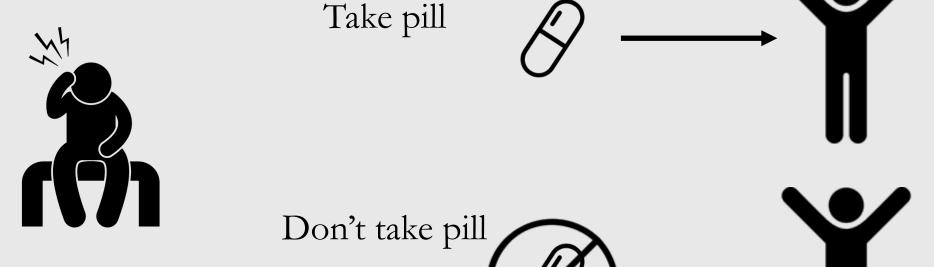
Inferring the effect of treatment/policy on some outcome

Take pill

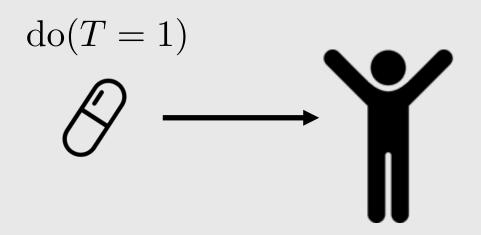




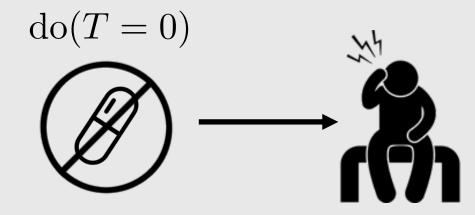
Inferring the effect of treatment/policy on some outcome

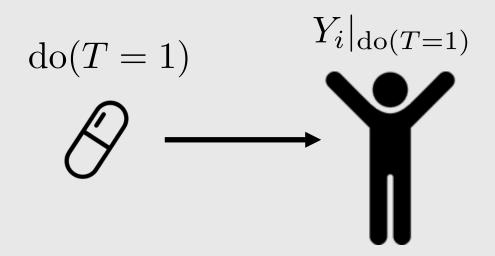


no causal effect



T: observed treatment Y: observed outcome

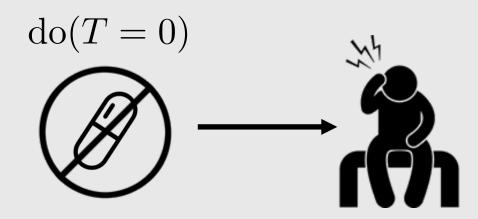


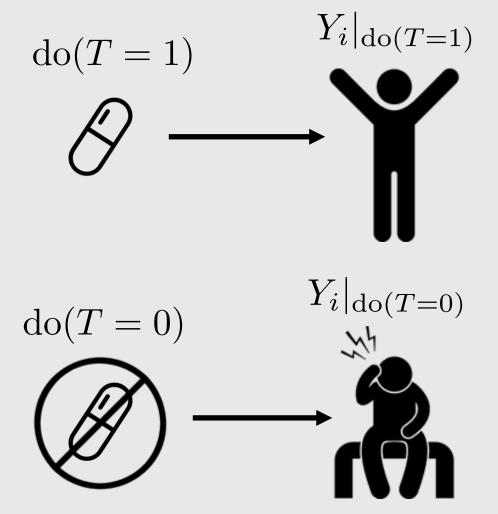


T: observed treatment

: observed outcome

i : used in subscript to denote a specific unit/individual

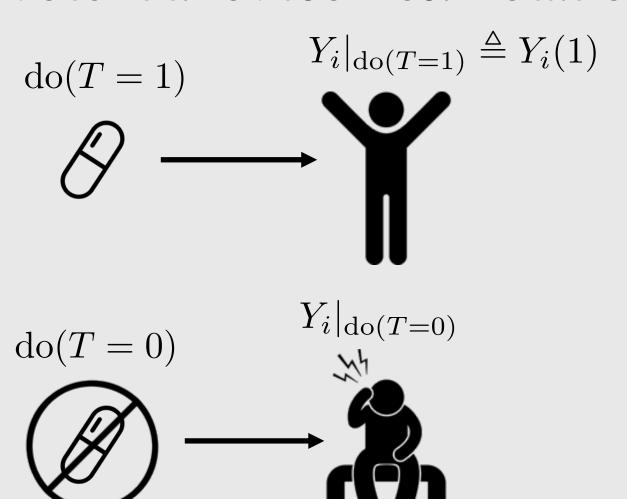




T: observed treatment

: observed outcome

i: used in subscript to denote a specific unit/individual



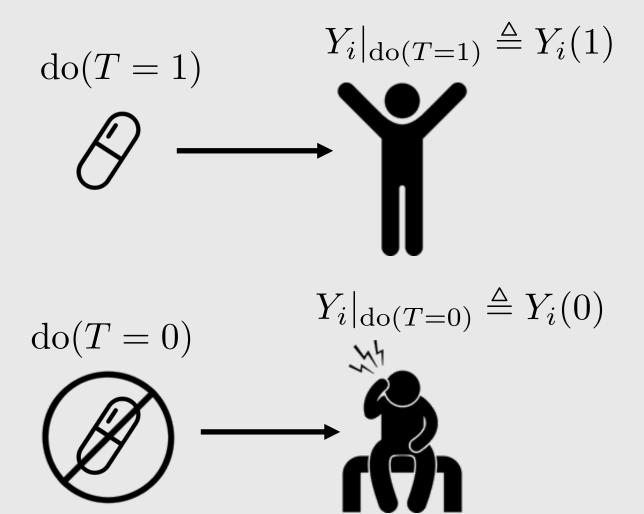
T: observed treatment

: observed outcome

i: used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment



T: observed treatment

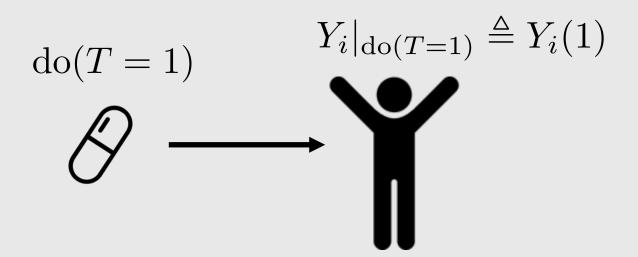
: observed outcome

i: used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment



: observed outcome

i : used in subscript to denote a specific unit/individual

 $Y_i(1)$: potential outcome under treatment

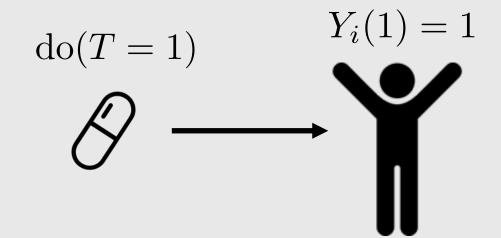
 $Y_i(0)$: potential outcome under no treatment

$$do(T = 0)$$

$$Y_i|_{do(T=0)} \triangleq Y_i(0)$$

$$Y_i(1) - Y_i(0)$$

Fundamental problem of causal inference



T: observed treatment

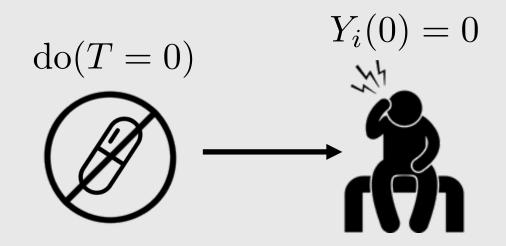
Y: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

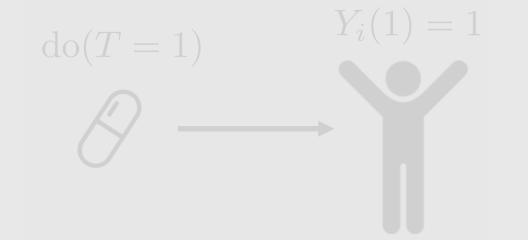
 $Y_i(0)$: potential outcome under no treatment



$$Y_i(1) - Y_i(0) = 1$$

Fundamental problem of causal inference

Counterfactual



T: observed treatment

: observed outcome

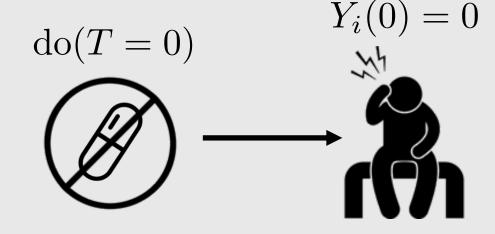
i: used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

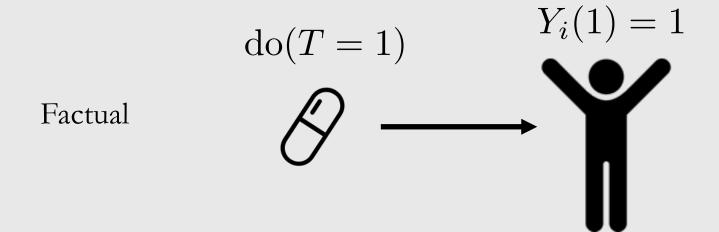
 $Y_i(0)$: potential outcome under no treatment

Factual



$$Y_i(1) - Y_i(0) = 1$$

Fundamental problem of causal inference



T: observed treatment

Y: observed outcome

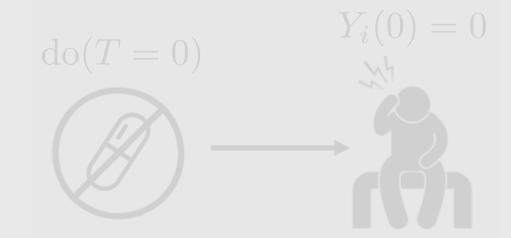
i: used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Counterfactual



$$Y_i(1) - Y_i(0) = 1$$

Individual treatment effect (ITE): $Y_i(1) - Y_i(0)$

: observed treatment

: observed outcome

: used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment Y(t): population-level potential outcome

Individual treatment effect (ITE): $Y_i(1) - Y_i(0)$

Average treatment effect (ATE):

$$\mathbb{E}[Y_i(1) - Y_i(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

T: observed treatment

Y: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Y(t): population-level potential outcome

Individual treatment effect (ITE): $Y_i(1) - Y_i(0)$

Average treatment effect (ATE):

$$\mathbb{E}[Y_i(1) - Y_i(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$\neq \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$

T: observed treatment

Y: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Y(t): population-level potential outcome

Individual treatment effect (ITE): $Y_i(1) - Y_i(0)$

Average treatment effect (ATE):

$$\mathbb{E}[Y_i(1) - Y_i(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$\neq \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$

T: observed treatment

Y: observed outcome

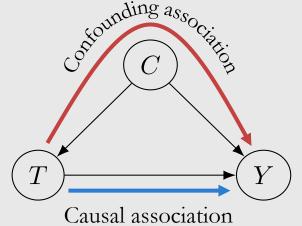
i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Y(t): population-level potential outcome



Recall: correlation does not imply causation

Individual treatment effect (ITE): $Y_i(1) - Y_i(0)$

Average treatment effect (ATE):

$$\mathbb{E}[Y_i(1) - Y_i(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$\neq \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$

T: observed treatment

: observed outcome

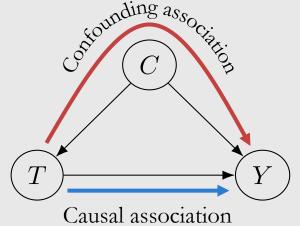
i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Y(t): population-level potential outcome



Recall: correlation does not imply causation

Individual treatment effect (ITE): $Y_i(1) - Y_i(0)$

Average treatment effect (ATE):

$$\mathbb{E}[Y_i(1) - Y_i(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

$$\neq \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$

T: observed treatment

Y: observed outcome

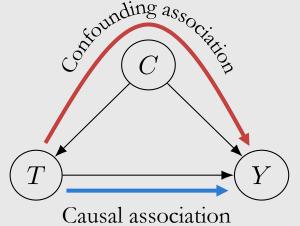
i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

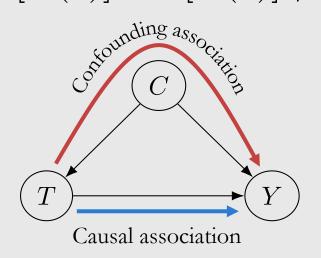
Y(t): population-level potential outcome



Recall: correlation does not imply causation

ATE when there is confounding:

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \neq \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$



T: observed treatment

Y : observed outcome

i : used in subscript to denote a

specific unit/individual

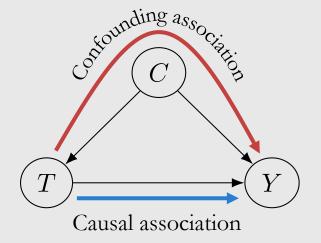
 $Y_i(1)$: potential outcome under treatment

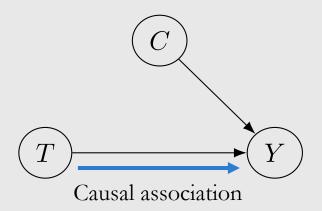
 $Y_i(0)$: potential outcome under no treatment

Y(t): population-level potential outcome

ATE when there is confounding:

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \neq \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$





T: observed treatment

Y: observed outcome

i : used in subscript to denote a

specific unit/individual

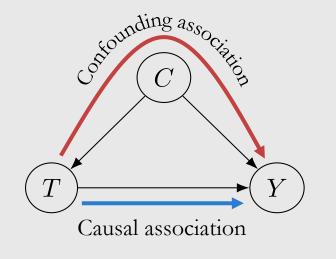
 $Y_i(1)$: potential outcome under treatment

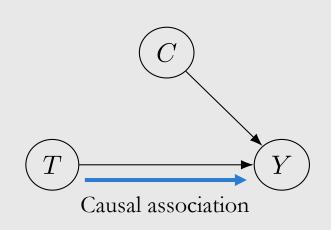
 $Y_i(0)$: potential outcome under no treatment

Y(t): population-level potential outcome

ATE when there is confounding:

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \neq \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$





T: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

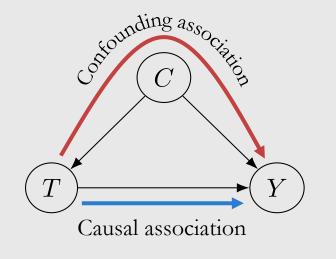
Y(t): population-level potential outcome

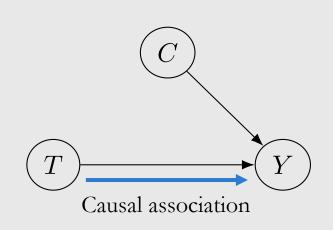
RCTs: experimenter randomizes subjects into treatment group or control group

1. T cannot have any causal parents

ATE when there is confounding:

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \neq \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$





T: observed treatment

Y: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

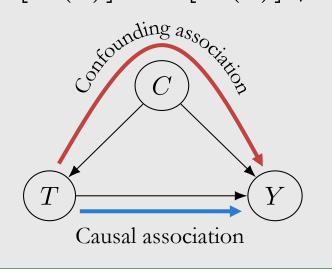
Y(t): population-level potential outcome

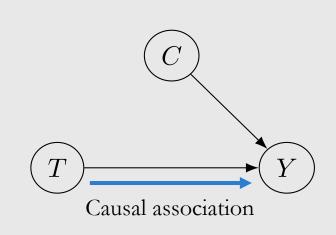
RCTs: experimenter randomizes subjects into treatment group or control group

- 1. T cannot have any causal parents
- 2. Groups are comparable

ATE when there is confounding:

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \neq \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$





ATE when there is **no** confounding (e.g. RCTs):

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y|T=1] - \mathbb{E}[Y|T=0]$$

T: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Y(t): population-level potential outcome

RCTs: experimenter randomizes subjects into treatment group or control group

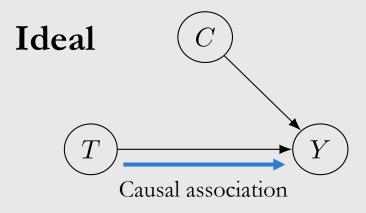
- 1. T cannot have any causal parents
- 2. Groups are comparable

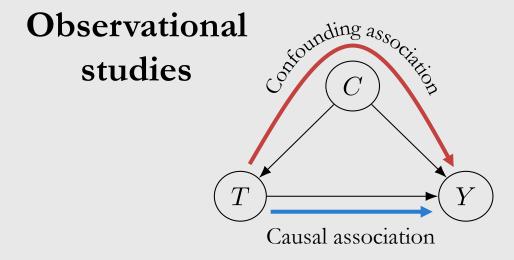
Motivating example: Simpson's paradox

Correlation does not imply causation

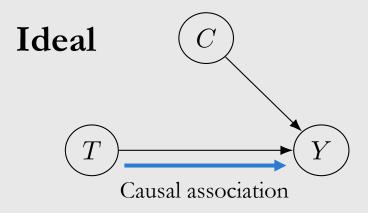
Then, what does imply causation?

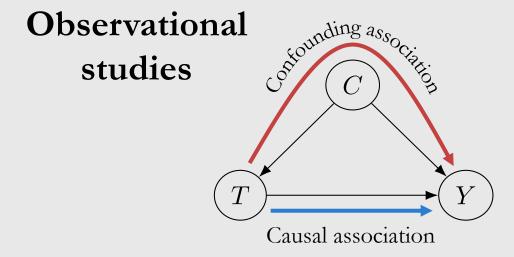
Causation in observational studies





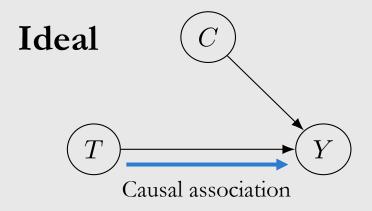
Can't always randomize treatment

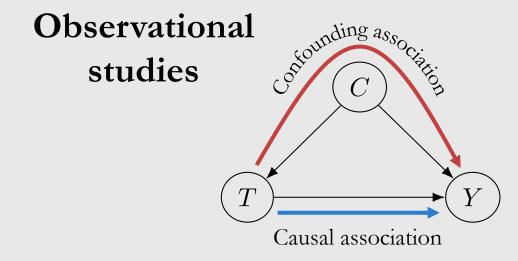




Can't always randomize treatment

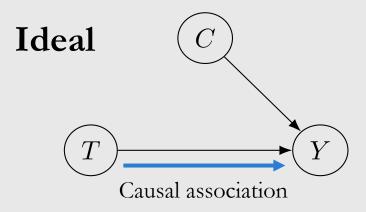
• Ethical reasons (e.g. unethical to randomize people to smoke for measuring effect on lung cancer)

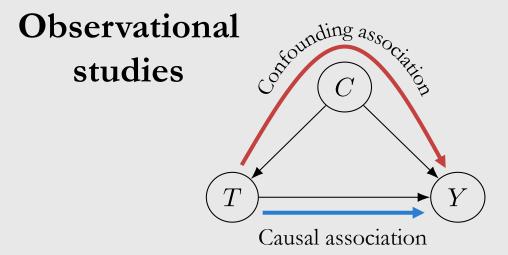




Can't always randomize treatment

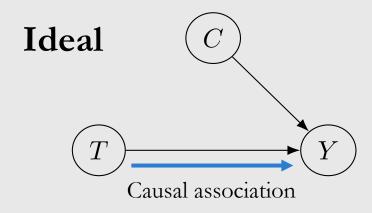
- Ethical reasons (e.g. unethical to randomize people to smoke for measuring effect on lung cancer)
- Infeasibility (e.g. can't randomize countries into communist/capitalist systems to measure effect on GDP)

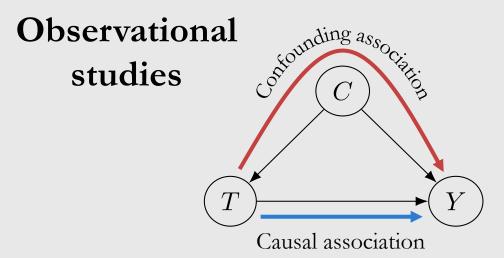




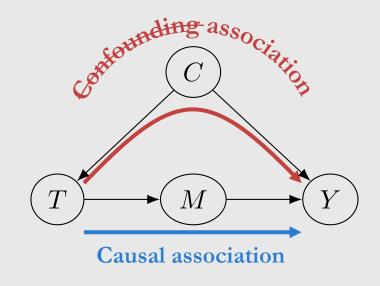
Can't always randomize treatment

- Ethical reasons (e.g. unethical to randomize people to smoke for measuring effect on lung cancer)
- Infeasibility (e.g. can't randomize countries into communist/capitalist systems to measure effect on GDP)
- Impossibility (e.g. can't change a living person's DNA at birth for measuring effect on breast cancer)

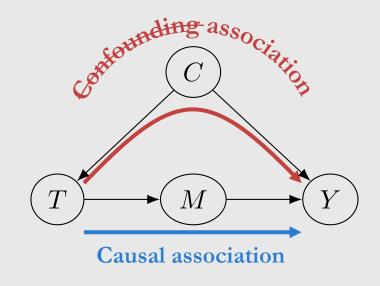




How do we measure causal effects in observational studies?



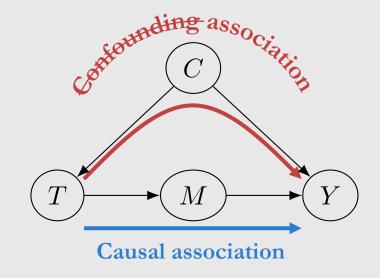
Adjust/control for the right variables W.



Adjust/control for the right variables W.

If W is a sufficient adjustment set, we have

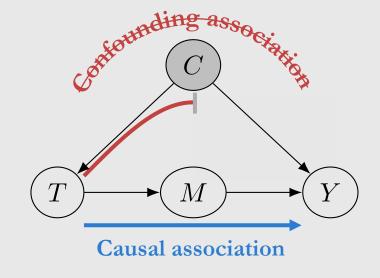
$$\mathbb{E}[Y(t)|W=w] \triangleq \mathbb{E}[Y|\text{do}(T=t), W=w] = \mathbb{E}[Y|t, w]$$



Adjust/control for the right variables W.

If W is a sufficient adjustment set, we have

$$\mathbb{E}[Y(t)|\underline{W=w}] \triangleq \mathbb{E}[Y|\text{do}(T=t),\underline{W=w}] = \mathbb{E}[Y|t,\underline{w}]$$

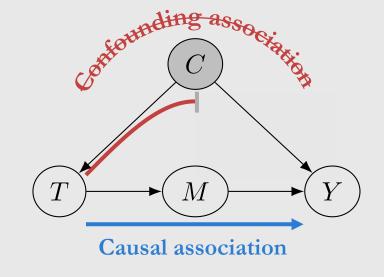


Adjust/control for the right variables W.

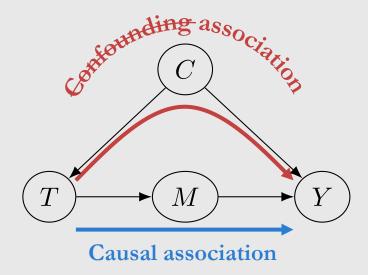
If W is a sufficient adjustment set, we have

$$\mathbb{E}[Y(t)|\underline{W}=\underline{w}] \triangleq \mathbb{E}[Y|\text{do}(T=t),\underline{W}=\underline{w}] = \mathbb{E}[Y|t,\underline{w}]$$

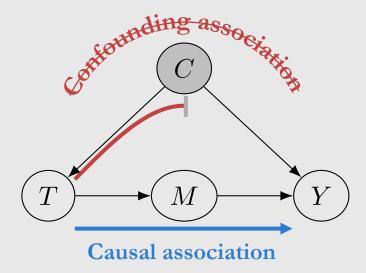
$$\mathbb{E}[Y(t)] \triangleq \mathbb{E}[Y|\text{do}(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t,W]$$



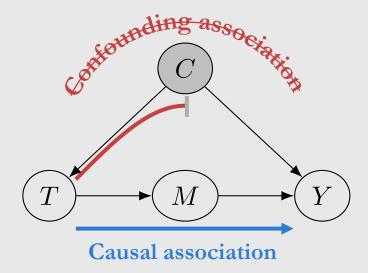
$$\mathbb{E}[Y|\operatorname{do}(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t,W]$$



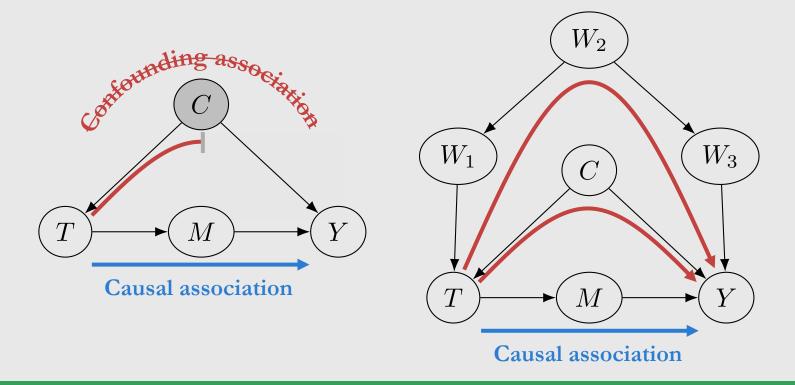
$$\mathbb{E}[Y|do(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t,W]$$



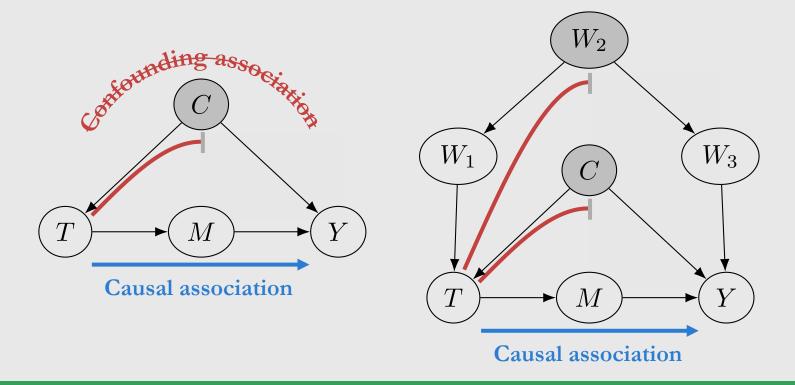
$$\mathbb{E}[Y|do(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t,W]$$



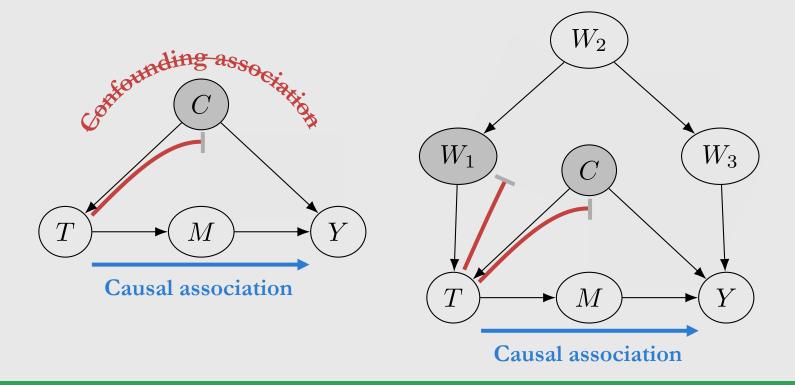
$$\mathbb{E}[Y|\operatorname{do}(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t,W]$$



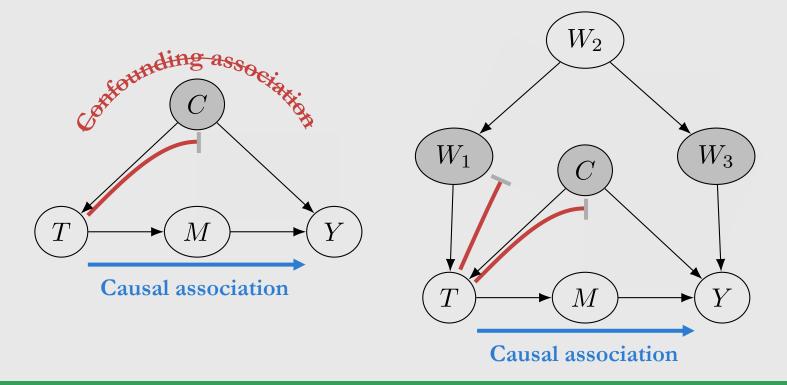
$$\mathbb{E}[Y|\operatorname{do}(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t,W]$$



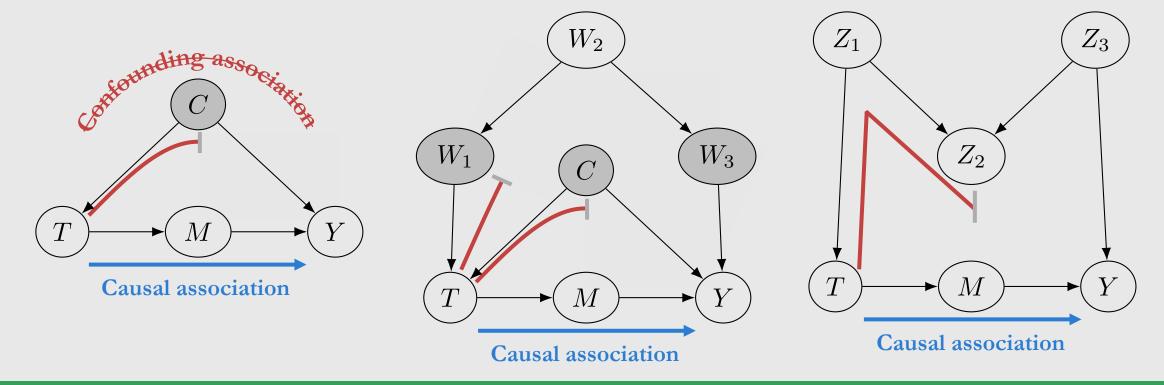
$$\mathbb{E}[Y|\operatorname{do}(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t,W]$$



$$\mathbb{E}[Y|\operatorname{do}(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t,W]$$



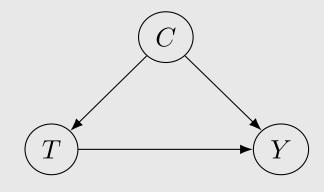
$$\mathbb{E}[Y|\operatorname{do}(T=t)] = \mathbb{E}_W \mathbb{E}[Y|t,W]$$



$$\mathbb{E}[Y|\text{do}(T=t)] = \mathbb{E}_C \mathbb{E}[Y|t,C]$$

Condition

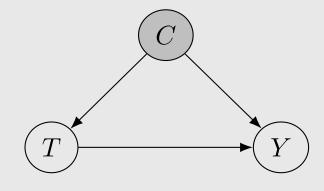
		Mild	Severe	Total
Treatment	A	15% (210/1400)	30% (30/100)	16% (240/1500)
steat.	В	10% (5/50)	20% (100/500)	19% (105/550)
		$\mathbb{E}[Y t, C=0]$	$\mathbb{E}[Y t, C=1]$	$\mathbb{E}[Y t]$



$$\mathbb{E}[Y|\text{do}(T=t)] = \mathbb{E}_C \mathbb{E}[Y|t,C]$$

Condition

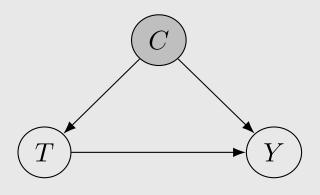
		Mild	Severe	Total
Creatinent	A	15% (210/1400)	30% (30/100)	16% (240/1500)
reals.	В	10% (5/50)	20% (100/500)	19% (105/550)
		$\boxed{\mathbb{E}[Y t, C=0]}$	$\boxed{\mathbb{E}[Y t, C=1]}$	$\mathbb{E}[Y t]$



$$\mathbb{E}[Y|\text{do}(T=t)] = \mathbb{E}_C \mathbb{E}[Y|t,C] = \sum_c \mathbb{E}[Y|t,c]P(c)$$

Condition

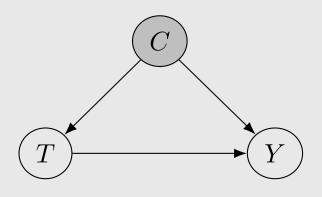
		Mild	Severe	Total
Creatinent	A	15% (210/1400)	30% (30/100)	16% (240/1500)
steat.	В	10% (5/50)	20% (100/500)	19% (105/550)
		$\mathbb{E}[Y t, C=0]$	$\mathbb{E}[Y t, C=1]$	$\mathbb{E}[Y t]$



$$\mathbb{E}[Y|\text{do}(T=t)] = \mathbb{E}_C \mathbb{E}[Y|t,C] = \sum_c \mathbb{E}[Y|t,c]P(c)$$

Condition

		Mild	Severe	Total	Causal
Treatment	A	15% (210/1400)	30% (30/100)	16% (240/1500)	19.4%
Creati	В	10% (5/50)	20% (100/500)	19% (105/550)	12.9%
		$\boxed{\mathbb{E}[Y t, C=0]}$	$\boxed{\mathbb{E}[Y t, C=1]}$	$\mathbb{E}[Y t]$	$\mathbb{E}[Y \mathrm{do}(t)]$



$$\mathbb{E}[Y|\text{do}(T=t)] = \mathbb{E}_C \mathbb{E}[Y|t,C] = \sum_c \mathbb{E}[Y|t,c]P(c)$$

Causal Graph

Condition

		Mild	Severe	Total	Causal
Treatment	A	15% (210/1400)	30% (30/100)	16% (240/1500)	19.4%
-Creati	В	10% (5/50)	20% (100/500)	19% (105/550)	12.9%
		$\mathbb{E}[Y t, C=0]$	$\boxed{\mathbb{E}[Y t,C=1]}$	$\mathbb{E}[Y t]$	$\mathbb{E}[Y \mathrm{do}(t)]$

$$\frac{1450}{2050} (0.15) + \frac{600}{2050} (0.30) \approx 0.194$$

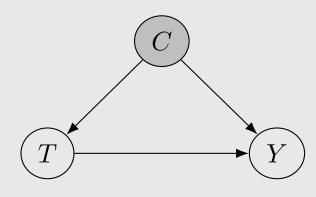
$$\frac{1450}{2050} (0.15) + \frac{600}{2050} (0.30) \approx 0.194$$

$$\frac{1450}{2050} (0.10) + \frac{600}{2050} (0.20) \approx 0.129$$

$$\mathbb{E}[Y|\text{do}(T=t)] = \mathbb{E}_C \mathbb{E}[Y|t,C] = \sum_c \mathbb{E}[Y|t,c]P(c)$$

Condition

		Mild	Severe	Total	Causal
Treatment.	A	15% (210/1400)	30% (30/100)	16% (240/1500)	19.4%
reali	В	10% (5/50)	20% (100/500)	19% (105/550)	12.9%
		$\mathbb{E}[Y t, C=0]$	$\mathbb{E}[Y t, C=1]$	$\mathbb{E}[Y t]$	$\mathbb{E}[Y \mathrm{do}(t)]$



$$\frac{1450}{2050} (0.15) + \frac{600}{2050} (0.30) \approx 0.194$$

$$\frac{1450}{2050} (0.10) + \frac{600}{2050} (0.20) \approx 0.129$$

$$\mathbb{E}[Y|\text{do}(T=t)] = \mathbb{E}_C \mathbb{E}[Y|t,C] = \sum_c \mathbb{E}[Y|t,c]P(c)$$

c

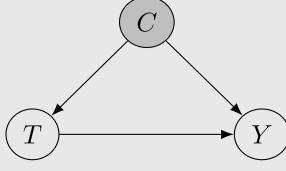
Condition

		Mild	Severe	Total	Causal
Treatment	A	15% (210/1400)	30% (30/100)	16% (240/1500)	19.4%
Kreat.	В	10% (5/ <u>50</u>)	20% (100/500)	19% (105/550)	12.9%
		$\mathbb{E}[Y t, C=0]$	$\mathbb{E}[Y t, C=1]$	$\mathbb{E}[Y t]$	$\mathbb{E}[Y \text{do}(t)]$



$$\mathbb{E}[Y|\text{do}(T=t)] = \mathbb{E}_C \mathbb{E}[Y|t,C] = \sum_c \mathbb{E}[Y|t,c]P(c)$$

Causal Graph



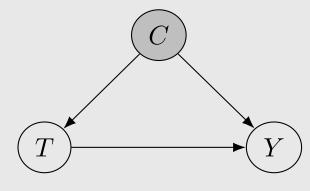
Condition Severe Total Causal

		Mild	Severe	Total	Causal
Treatment	A	15% (210/1400)	30% (30/100)	16% (240/1500)	19.4%
-Creati	В	10% (5/50)	20% (100/500)	19% (105/550)	12.9%
		$\boxed{\mathbb{E}[Y t,C=0]}$	$\mathbb{E}[Y t, C=1]$	$\mathbb{E}[Y t]$	$\mathbb{E}[Y \mathrm{do}(t)]$

$\frac{1450}{2050}$ (0.15) +	$\frac{600}{2050}$ (0.30)	≈ 0.194
$\frac{1450}{2050}$ (0.10) +	$\frac{600}{2050}$ (0.20)	≈ 0.129

$$\mathbb{E}[Y|\text{do}(T=t)] = \mathbb{E}_C \mathbb{E}[Y|t,C] = \sum_c \mathbb{E}[Y|t,c]P(c)$$

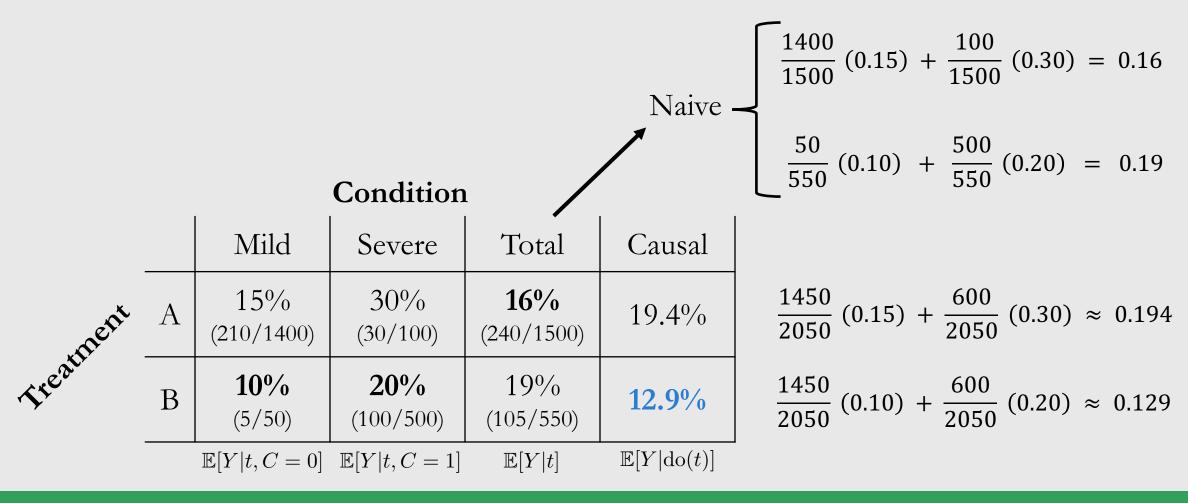
Causal Graph

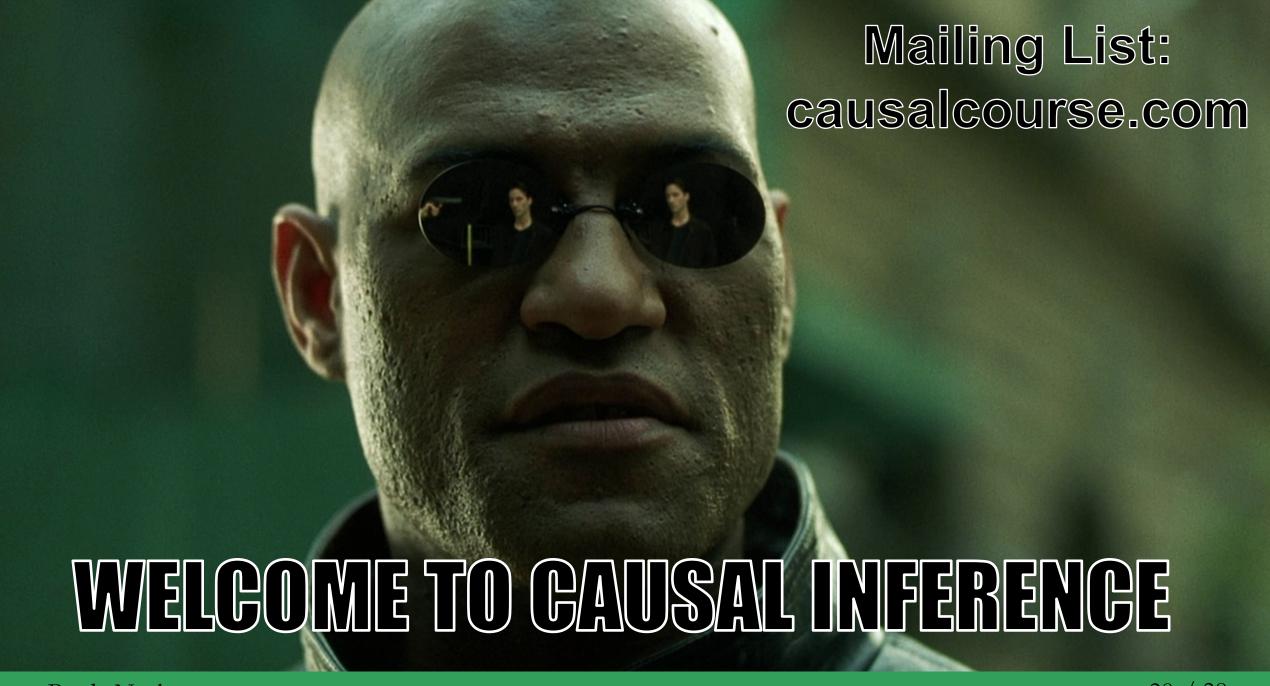


Condition

		Mild	Severe	Total	Causal
Treatinent	A	15% (210/1400)	30% (30/ <u>100</u>)	16% (240/1500)	19.4%
Creati	В	10% (5/50)	20% (100/ <u>500</u>)	19% (105/550)	12.9%
		$\boxed{\mathbb{E}[Y t, C=0]}$	$\mathbb{E}[Y t, C=1]$	$\mathbb{E}[Y t]$	$\mathbb{E}[Y \mathrm{do}(t)]$

$\frac{1450}{2050}$ (0.15) +	$\frac{600}{2050}$ (0.30)	≈	0.194
$\frac{1450}{2050}$ (0.10) +	$\frac{600}{2050}$ (0.20)	≈	0.129





Brady Neal 28 / 28