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Inferring the effects of any treatment/policy/intervention/etc.

Examples:
* Effect of treatment on a disease
* Etfect of climate change policy on emissions

e Effect of social media on mental health
* Many more (etfect of X onY)
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Outcome Y: alive (0) or dead (1)
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Simpson’s paradox: mortality rate table
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Mild Severe Total
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Simpson’s paradox: scenario 2 (treatment A)
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Correlation does not imply causation

Sleeping with shoes on 1s strongly correlated with waking up with a headache

Common cause: drinking the night before

1. Shoe-sleepers differ from non-shoe-
sleepers in a key way

2. Confounding

Total association (e.g, correlation): 7

mixture of causal and 72
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Nicolas Cage drives people to drown themselves

Number of people who drowned by falling into a pool
correlates with

Films Nicolas Cage appeared in

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

140 drownings 6 films

20 drownings 4 films
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-®- Nicholas Cage -¢- Swimming pool drownings
tylervigen.com

https://www.tylervigen.com/sputious-cortelations
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Potential outcomes: notation
Yilao(r=1) = Yi(1)

T : observed treatment
dO (T — ]‘) Y : observed outcome
1 :used in subscript to denote a
specific unit/individual

— ]
§ Y; (1) : potential outcome under treatment

Y;(0) : potential outcome under no treatment

Causal effect

Yi(1) = Yi(0)




Fundamental problem of causal inference
Yi(1) =1
@

T : observed treatment
Y : observed outcome
1 :used in subscript to denote a

do(T' = 1)

specific unit/individual
Y; (1) : potential outcome under treatment
Y;(0) : potential outcome under no treatment

=0
Causal effect

(1) = Y;(0) = 1
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T : observed treatment
Y : observed outcome
1

Y;(1) =1
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Randomized control trials (RCTs)

ATE when there is confounding: : observed treatment

T
E[Y(l)] — E[Y(O)] 7é EY‘T — 1] _ E[Y‘T _ O] 12/ . observed outcome

: used in subscript to denote a

specific unit/individual
(1) : potential outcome under treatment
Y, (O) : potential outcome under no treatment
Y(t): population-level potential outcome

<

@ RCTs: experimenter randomizes

>
Causal association

Causal association subjects into treatment group

or control group
ATE when there is no confounding (e.g. RCTs): 1. g;zz‘?sm have any causal
E[Y (1)] = E[Y(0)] = E[Y|T = 1] = E[Y|T = 0]

2. Groups are comparable
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Observational studies

Can’t always randomize treatment Ideal
* Ethical reasons (e.g unethical to
randomize people to smoke for @ -
. >
measuring etfect on lung cancer) Causal association

* Infeasibility (e.g. can’t randomize
countries into communist/ capitalist
systems to measure effect on GDP)

Observational ~ singas,
studies

* Impossibility (e.g. can’t change a living
person’s DNA at birth for measuring
etfect on breast cancer)

Causal association




How do we measure causal
effects in observational studies?
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Solution: backdoor adjustment

E[Y|do(T = t)] = EwE[Y|t, W]

Shaded nodes are examples of sufficient adjustment sets W
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(W)
= / (G (V)

Causal association

Causal association

Causal associatlon




Application to the COVID-27 example

E[Y|do(T = t)] = EcE[Y]t, O]

Condition
Mild Severe Total
15% 30% 16%
(210/1400) (30/100) (240/1500)
10% 20% 19%
(5/50) | (100/500) | (105/550)
E[Y[t,C=0] E[Y[t,C=1 E[Y[|{

Causal Graph




Application to the COVID-27 example

E[Y|do(T = t)] = EcE[Y]t, O]

Condition
Mild Severe Total
15% 30% 16%
(210/1400) (30/100) (240/1500)
10% 20% 19%
(5/50) | (100/500) | (105/550)
E[Y[t,C=0] E[Y[t,C=1 E[Y[|{

Causal Graph




Application to the COVID-27 example

Causal h
ElY|do(T =t)| = EcE[Y|t,C] = ZE[Y|t> c|P(c) ausal Grap

Condition -
Mild Severe Total

<A 15% 30% 16%
>
2 (210/1400) | (30/100) | (240/1500)

&& B 10% 20% 19%
(5/50) (100/500) | (105/550)

E[Y|t,C=0] E[Y|t,C=1] E[Y[{




Application to the COVID-27 example

Causal Graph
ElY|do(T =t)| = EcE[Y|t,C] = ZE[YW P (c) albisall

Condition -
Mild Severe Total Causal

<A 15% 30% 16%
>
2 (210/1400) | (30/100) | (240/1500)

&& B 10% 20% 19%
(5/50) (100/500) | (105/550)

19.4%

12.9%

E[Y|t,C =0] E[Y|t,C=1] E[Y|{ E[Y|do(t)]




Application to the COVID-27 example

Causal Graph
ElY|do(T =t)| = EcE[Y|t,C] = ZE[YW P (c) albisall

Condition T

Mild Severe Total Causal

15% 30% 16% 1450 600
X 0 1300 ey -
@& A (210/1400) | (30/100) | (240/1500) 19.4% 2050 (019) + 5550 (0:30) ~ 0.194
L
< 10% 20% 199 1450 600
< = (5/5(;)) (100/580) (1059/5/20) — 2050 (010 * 555 (020) ~ 0.129

E[Y|t,C =0] E[Y|t,C=1] E[Y|{ E[Y|do(t)]




Application to the COVID-27 example

Causal Graph
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Application to the COVID-27 example
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Application to the COVID-27 example
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Application to the COVID-27 example

Nailve —
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