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Causal graph «<—— Data

Faithfulness: X llqY |Z < X llpY |Z
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Violation of Faithfulness

Faithfulness: X llgqY |Z << X llpY |Z

e B :=aA
C:.=~A
but A and D aren’t d-separated
D = 3B + 6C
D = (af+7J)A

Paths cancel if a8 = —~0
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Causal Sufticiency and Acyclicity

Causal Sufficiency: there are no unobserved confounders of any of the
variables in the graph.

Acyclicity: still assuming there are no cycles in the graph.

All assumptions:
* Markov assumption
* Faithfulness
* Causal sufficiency
* Acyclicity



(Question:

Why 1s the Markov assumption (plus causal
sufficiency and acyclicity) not enough for
learning causal graphs from data?
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Chains and Forks Encode Same Independencies

Markov equivalent (all in the same Markov equivalence class)
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Faithfulness: X; U X3
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Markov equivalence class where
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Two important graph qualities that we can use to distinguish graphs:

1. Immoralities
2. Skeleton

Theorem: Two graphs are Markov equivalent it and only if they have the same
skeleton and same immoralities (Verma & Pearl, 1990; Frydenburg, 1990).
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Markov Equivalence via Immoral Skeletons

Two important graph qualities that we can use to distinguish graphs:

1. Immoralities
2. Skeleton

Theorem: Two graphs are Markov equivalent it and only if they have the same
skeleton and same immoralities (Verma & Pearl, 1990; Frydenburg, 1990).

Essential graph (aka CPDAG): skeleton + immoralities


https://arxiv.org/abs/1304.1108
https://www.jstor.org/stable/4616181
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The PC Algorithm: Overview True graph

Start with complete undirected graph
Three steps:

1. Identify the skeleton

2. Identify immoralities and orient them

3. Ortent qualifying edges that are incident
on colliders
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Identitying the Skeleton

Start with complete undirected graph and remove
edges X —Y where X 1L Y | Z for some (potentially
empty) conditioning set Z, starting with the empty
conditioning set and increasing the size

ALBI|{}

V other pairs (X,Y), X LY |{C}
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Identitying the Immoralities 0 O

Now for any paths X — Z —Y in our working
ograph where the following are true: Q

1. We discovered that there is no edge between

X and Y 1n our previous step. e @
(4

2. Z was not in the conditioning set that makes
X and Y conditionally independent. @
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Then, we know X — 7 —Y forms an immortality.
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True graph

Idea: use fact that we discovered all immoralities to orient
more edges

Any edge Z — Y part of a partially directed path of the
form X — Z — Y, where there 1s no edge connecting X
and Y can be oriented as Z —» Y
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No assumed acyclicity: CCD algorithm (Richardson, 1996)



https://mitpress.mit.edu/books/causation-prediction-and-search-second-edition
https://www.google.com/search?client=safari&rls=en&sxsrf=ALeKk00YpsO4nPOId-dP5T0KHsFwr3UxLw%3A1604732745706&ei=SUemX6LMKtGk_Qbi2J24Dg&q=richardson+1996+%22Feedback+models%3A+Interpretation+and+discovery%22&oq=richardson+1996+%22Feedback+models%3A+Interpretation+and+discovery%22&gs_lcp=CgZwc3ktYWIQAzIECCMQJzoHCCMQsAIQJ1Ca-AFYtJICYJ2UAmgBcAB4AIABUYgBpAOSAQE2mAEAoAEBqgEHZ3dzLXdpesABAQ&sclient=psy-ab&ved=0ahUKEwjilJGq7-_sAhVRUt8KHWJsB-cQ4dUDCAw&uact=5

Removing Assumptions

No assumed causal sufficiency: FCI algorithm (Spirtes et al., 2001)

No assumed acyclicity: CCD algorithm (Richardson, 1996)

Neither causal sufficiency nor acyclicity: SAT-based causal discovery
(Hyttinen et al., 2013; 2014)


https://mitpress.mit.edu/books/causation-prediction-and-search-second-edition
https://www.google.com/search?client=safari&rls=en&sxsrf=ALeKk00YpsO4nPOId-dP5T0KHsFwr3UxLw%3A1604732745706&ei=SUemX6LMKtGk_Qbi2J24Dg&q=richardson+1996+%22Feedback+models%3A+Interpretation+and+discovery%22&oq=richardson+1996+%22Feedback+models%3A+Interpretation+and+discovery%22&gs_lcp=CgZwc3ktYWIQAzIECCMQJzoHCCMQsAIQJ1Ca-AFYtJICYJ2UAmgBcAB4AIABUYgBpAOSAQE2mAEAoAEBqgEHZ3dzLXdpesABAQ&sclient=psy-ab&ved=0ahUKEwjilJGq7-_sAhVRUt8KHWJsB-cQ4dUDCAw&uact=5
https://arxiv.org/abs/1309.6836
http://auai.org/uai2014/proceedings/individuals/87.pdf
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Hardness of Conditional Independence Testing

Independence-based causal discovery algorithms rely on accurate
conditional independence testing,

Conditional independence testing is simple if we have infinite data.

However, it 1s a quite hard problem with finite data, and it can sometimes
require a lot of data to get accurate test results (Shah & Peters, 2020).



https://arxiv.org/abs/1804.07203
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Questions:

1. What are the essential graphs of the following graphs?
2. Walk through the steps of PC to get them.



(Question:
What is the essential
oraph tfor this graph'@
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If we have multinomial distributions (Meek, 1995) or linear Gaussian
structural equations (Geiger & Pearl, 1988), we can only identify a graph
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Can We Do Better?

With faithfulness, we saw we can identify the essential graph (Markov
equivalence class).

If we have multinomial distributions (Meek, 1995) or linear Gaussian
structural equations (Geiger & Pearl, 1988), we can only identify a graph
up to its Markov equivalence class.

What about non-Gaussian structural equations?

Or nonlinear structural equations?


https://arxiv.org/abs/1302.4973
https://arxiv.org/abs/1304.2355
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* Requires faithfulness assumption

* Large samples can be necessary for conditional independence tests

* Only identifies the Markov equivalence class
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Two Variable Case: Markov Equivalence

Infinite data: P(x, y)

O—® = O
Essential graph: @—@
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Two Variable Case: SCMs Perspective

Proposition: For every joint distribution P(x, y) on two real-valued
random variables, there is an SCM in either direction that generates data
consistent with P(x, y).

Mathematically, there exists a function fy such that

Y =fy(X,Uy), X UUy @—>@

and there exists a function fx such that

X =fx(Y,Ux), Y 1l Ux (x)—(v)

where Uy and Ux are real-valued random wvariables.



We must make assumptions
about the parametric form.
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Linear Non-Gaussian Assumption

Recall: We cannot hope to identify the graph more precisely than the Markov
equivalence class in the linear Gaussian noise setting (Geiger & Pearl, 1988).
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Recall: We cannot hope to identify the graph more precisely than the Markov
equivalence class in the linear Gaussian noise setting (Geiger & Pearl, 1988).

What if the noise 1s non-Gaussian?
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Linear Non-Gaussian Assumption

Recall: We cannot hope to identify the graph more precisely than the Markov
equivalence class in the linear Gaussian noise setting (Geiger & Pearl, 1988).

What if the noise 1s non-Gaussian?

Linear Non-Gaussian Assumption:

All structural equations (causal mechanisms that generate the data) are of the following

form:
Y =f(X)+ U

where f 1s a linear function, X 1l U, and U 1s distributed as some non-Gaussian.


https://arxiv.org/abs/1304.2355

Identifiability 1in Linear Non-Gaussian Setting

Theorem (Shimizu et al., 20006):

In the linear non-Gaussian setting, if the true SCM 1s
Y =fX)+U, X 1U,

then there does not exist an SCM in the reverse direction,
X =9gY)+U, Y 1U,

that can generate data consistent with P(z,y).



https://www.jmlr.org/papers/volume7/shimizu06a/shimizu06a.pdf

Identifiability 1in Linear Non-Gaussian Setting

Theorem (Shimizu et al., 20006):

In the linear non-Gaussian setting, if the true SCM 1s
Y =fX)+U, X 1U,

then there does not exist an SCM in the reverse direction,
X =9gY)+U, Y 1U,

that can generate data consistent with P(z,y).

See proof in the course book



https://www.jmlr.org/papers/volume7/shimizu06a/shimizu06a.pdf
https://www.bradyneal.com/causal-inference-course
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Linear Non-Gaussian Identifiability Extensions

* Multivariate: Shimizu et al., (20006)



https://www.jmlr.org/papers/volume7/shimizu06a/shimizu06a.pdf

Linear Non-Gaussian Identifiability Extensions

* Multivariate: Shimizu et al., (20006)

* Drop causal sutticiency assumption: Hoyer et al. (2008)



https://www.jmlr.org/papers/volume7/shimizu06a/shimizu06a.pdf
https://dl.acm.org/doi/10.1016/j.ijar.2008.02.006

Linear Non-Gaussian Identifiability Extensions

* Multivariate: Shimizu et al., (20006)

* Drop causal sutticiency assumption: Hoyer et al. (2008)

* Drop acyclicity assumption: Lacerda et al. (2008)



https://www.jmlr.org/papers/volume7/shimizu06a/shimizu06a.pdf
https://dl.acm.org/doi/10.1016/j.ijar.2008.02.006
https://arxiv.org/abs/1206.3273
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Identifiability in Nonlinear Additive Noise Setting

Recall: We cannot hope to identify the graph more precisely than the Markov
equivalence class in the linear Gaussian noise setting (Geiger & Pearl, 1988).
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Identifiability in Nonlinear Additive Noise Setting

Recall: We cannot hope to identify the graph more precisely than the Markov
equivalence class in the linear Gaussian noise setting (Geiger & Pearl, 1988).

What if the structural equations are nonlinear?
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Identifiability in Nonlinear Additive Noise Setting

Recall: We cannot hope to identify the graph more precisely than the Markov
equivalence class in the linear Gaussian noise setting (Geiger & Pearl, 1988).

What if the structural equations are nonlinear?

Nonlinear additive noise assumption: Vi, X, := f;(pa;) + U; where f; is nonlinear
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Identifiability in Nonlinear Additive Noise Setting

Recall: We cannot hope to identify the graph more precisely than the Markov
equivalence class in the linear Gaussian noise setting (Geiger & Pearl, 1988).

What if the structural equations are nonlinear?
Nonlinear additive noise assumption: Vi, X, := f;(pa;) + U; where f; is nonlinear

Theorem (Hoyer et al. 2008): Under the Markov assumption, causal sufficiency,
acyclicity, the nonlinear additive noise assumption, and a technical condition from
Hoyer et al. (2008), we can identify the causal graph.



https://arxiv.org/abs/1304.2355
https://papers.nips.cc/paper/2008/hash/f7664060cc52bc6f3d620bcedc94a4b6-Abstract.html
https://papers.nips.cc/paper/2008/hash/f7664060cc52bc6f3d620bcedc94a4b6-Abstract.html
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Post-Nonlinear Setting

Nonlinear additive noise setting: Y := f(X)+U, X 1L U

Post-nonlinear (Zhang & Hyvarinen, 2009):

Y =9g(f(X)+U), X1LU



https://arxiv.org/abs/1205.2599

Review Articles and Book

* Introduction to the Foundations of Causal Discovery (Eberhardt, 2017)

* Review of Causal Discovery Methods Based on Graphical Models
(Glymour, Zhang, & Spirtes, 2019)

* Elements of Causal Inference (Peters, Janzing, & Scholkopft, 2017)



https://link.springer.com/article/10.1007/s41060-016-0038-6
https://www.frontiersin.org/articles/10.3389/fgene.2019.00524/full
https://mitpress.mit.edu/books/elements-causal-inference

