Causal Discovery from Observational Data

Brady Neal

causalcourse.com

What if we don't have the causal graph?

Brady Neal 2 / 4

What if we don't have the causal graph?

Causal discovery: data ——— causal graph

Brady Neal 2 / 4

What if we don't have the causal graph?

Causal discovery: data ——— causal graph

Structure identification: identifying the causal graph

Brady Neal 2 / 4

Independence-Based Causal Discovery

Assumptions

Markov Equivalence and Main Theorem

The PC Algorithm

Can We Do Better?

Semi-Parametric Causal Discovery

No Identifiability Without Parametric Assumptions

Linear Non-Gaussian Setting

Nonlinear Additive Noise Setting

3 / 45

Independence-Based Causal Discovery

Assumptions

Markov Equivalence and Main Theorem

The PC Algorithm

Can We Do Better?

Semi-Parametric Causal Discovery

No Identifiability Without Parametric Assumptions

Linear Non-Gaussian Setting

Nonlinear Additive Noise Setting

Recall the Markov assumption: $X \perp \!\!\!\perp_G Y \mid Z \implies X \perp \!\!\!\perp_P Y \mid Z$

Recall the Markov assumption: $X \perp \!\!\!\perp_G Y \mid Z \implies X \perp \!\!\!\perp_P Y \mid Z$

Causal graph — Data

Recall the Markov assumption: $X \perp \!\!\!\perp_G Y \mid Z \implies X \perp \!\!\!\perp_P Y \mid Z$

Causal graph — Data

Causal graph — Data

Brady Neal Assumptions 5 / 45

Recall the Markov assumption: $X \perp \!\!\!\perp_G Y \mid Z \implies X \perp \!\!\!\perp_P Y \mid Z$

Causal graph — Data

Causal graph — Data

Faithfulness: $X \perp\!\!\!\perp_G Y \mid Z \iff X \perp\!\!\!\perp_P Y \mid Z$

 $A \perp \!\!\! \perp D$

Faithfulness: $X \perp\!\!\!\perp_G Y \mid Z \iff X \perp\!\!\!\perp_P Y \mid Z$

 $A \perp \!\!\! \perp D$

but A and D aren't d-separated

Faithfulness: $X \perp \!\!\!\perp_G Y \mid Z \iff X \perp \!\!\!\perp_P Y \mid Z$

 $A \perp \!\!\! \perp D$

but A and D aren't d-separated

$$B := \alpha A$$

$$C := \gamma A$$

$$D := \beta B + \delta C$$

Brady Neal Assumptions 6 / 45

Faithfulness: $X \perp \!\!\!\perp_G Y \mid Z \iff X \perp \!\!\!\perp_P Y \mid Z$

 $A \perp \!\!\! \perp D$

but A and D aren't d-separated

$$B := \alpha A$$

$$C := \gamma A$$

$$D := \beta B + \delta C$$

$$D = (\alpha\beta + \gamma\delta)A$$

Faithfulness: $X \perp \!\!\!\perp_G Y \mid Z \iff X \perp \!\!\!\perp_P Y \mid Z$

 $A \perp \!\!\! \perp D$

but A and D aren't d-separated

$$B := \alpha A$$

$$C := \gamma A$$

$$D := \beta B + \delta C$$

$$D = (\alpha\beta + \gamma\delta)A$$

Paths cancel if $\alpha\beta = -\gamma\delta$

Causal Sufficiency: there are no unobserved confounders of any of the variables in the graph.

Causal Sufficiency: there are no unobserved confounders of any of the variables in the graph.

Acyclicity: still assuming there are no cycles in the graph.

Causal Sufficiency: there are no unobserved confounders of any of the variables in the graph.

Acyclicity: still assuming there are no cycles in the graph.

All assumptions:

- Markov assumption
- Faithfulness
- Causal sufficiency
- Acyclicity

Causal Sufficiency: there are no unobserved confounders of any of the variables in the graph.

Acyclicity: still assuming there are no cycles in the graph.

All assumptions:

- Markov assumption
- Faithfulness
- Causal sufficiency
- Acyclicity

Question:

Why is the Markov assumption (plus causal sufficiency and acyclicity) not enough for learning causal graphs from data?

Independence-Based Causal Discovery

Assumptions

Markov Equivalence and Main Theorem

The PC Algorithm

Can We Do Better?

Semi-Parametric Causal Discovery

No Identifiability Without Parametric Assumptions

Linear Non-Gaussian Setting

Nonlinear Additive Noise Setting

Markov: $X_1 \perp \!\!\! \perp X_3 \mid X_2$

Markov: $X_1 \perp \!\!\! \perp X_3 \mid X_2$

Minimality: $X_1 \not\perp \!\!\! \perp X_2$ and $X_2 \not\perp \!\!\! \perp X_3$

Markov: $X_1 \perp \!\!\! \perp X_3 \mid X_2$

Minimality: $X_1 \not\perp \!\!\! \perp X_2$ and $X_2 \not\perp \!\!\! \perp X_3$

Faithfulness: $X_1 \not\perp \!\!\! \perp X_3$

Markov equivalent (all in the same Markov equivalence class)

Markov: $X_1 \perp \!\!\! \perp X_3 \mid X_2$

Minimality: $X_1 \not\perp \!\!\! \perp X_2$ and $X_2 \not\perp \!\!\! \perp X_3$

Faithfulness: $X_1 \not\perp \!\!\! \perp X_3$

Immoralities are Special

Markov equivalence class where $X_1 \perp \!\!\! \perp X_3 \mid X_2$ and $X_1 \not \perp \!\!\! \perp X_3$

Immoralities are Special

Markov equivalence class where $X_1 \perp \!\!\! \perp X_3 \mid X_2$ and $X_1 \not \perp \!\!\! \perp X_3$

Immoralities are Special

 $X_1 \perp \!\!\! \perp X_3$

Markov equivalence class where $X_1 \perp \!\!\! \perp X_3 \mid X_2$ and $X_1 \not \perp \!\!\! \perp X_3$

Immoralities are Special

 $X_1 \perp \!\!\! \perp X_3$ and $X_1 \not \perp \!\!\! \perp X_3 \mid X_2$

Markov equivalence class where $X_1 \perp \!\!\! \perp X_3 \mid X_2$ and $X_1 \perp \!\!\! \perp X_3$

Immoralities are Special

Markov equivalence class where $X_1 \perp \!\!\! \perp X_3$ and $X_1 \not \!\! \perp X_3 \mid X_2$

Markov equivalence class where $X_1 \perp \!\!\! \perp X_3 \mid X_2$ and $X_1 \perp \!\!\! \perp X_3$

$$X_1 \coprod X_3 \mid X_2$$
 $X_1 \coprod X_3 \mid X_3$

Two important graph qualities that we can use to distinguish graphs:

Two important graph qualities that we can use to distinguish graphs:

1. Immoralities

Two important graph qualities that we can use to distinguish graphs:

- 1. Immoralities
- 2. Skeleton

Two important graph qualities that we can use to distinguish graphs:

- 1. Immoralities
- 2. Skeleton

Theorem: Two graphs are Markov equivalent if and only if they have the same skeleton and same immoralities (Verma & Pearl, 1990; Frydenburg, 1990).

Two important graph qualities that we can use to distinguish graphs:

- 1. Immoralities
- 2. Skeleton

Theorem: Two graphs are Markov equivalent if and only if they have the same skeleton and same immoralities (Verma & Pearl, 1990; Frydenburg, 1990).

Essential graph (aka CPDAG): skeleton + immoralities

What graphs are Markov equivalent to the

 X_2

basic fork graph?

What graphs are Markov equivalent to the basic immorality?

 X_1

 X_3

Give a few graphs that the following graph is Markov equivalent to:

Independence-Based Causal Discovery

Assumptions

Markov Equivalence and Main Theorem

The PC Algorithm

Can We Do Better?

Semi-Parametric Causal Discovery

No Identifiability Without Parametric Assumptions

Linear Non-Gaussian Setting

Nonlinear Additive Noise Setting

True graph

Start with complete undirected graph

True graph

Start with complete undirected graph

Start with complete undirected graph Three steps:

Start with complete undirected graph

Three steps:

1. Identify the skeleton

Start with complete undirected graph

Three steps:

- 1. Identify the skeleton
- 2. Identify immoralities and orient them

Start with complete undirected graph

Three steps:

- 1. Identify the skeleton
- 2. Identify immoralities and orient them
- 3. Orient qualifying edges that are incident on colliders

True graph

Start with complete undirected graph and remove edges X - Y where $X \perp\!\!\!\perp Y \mid Z$ for some (potentially empty) conditioning set Z, starting with the empty conditioning set and increasing the size

Start with complete undirected graph and remove edges X - Y where $X \perp\!\!\!\perp Y \mid Z$ for some (potentially empty) conditioning set Z, starting with the empty conditioning set and increasing the size

True graph

Start with complete undirected graph and remove edges X - Y where $X \perp\!\!\!\perp Y \mid Z$ for some (potentially empty) conditioning set Z, starting with the empty conditioning set and increasing the size

Start with complete undirected graph and remove edges X - Y where $X \perp\!\!\!\perp Y \mid Z$ for some (potentially empty) conditioning set Z, starting with the empty conditioning set and increasing the size

True graph

 $A \perp \!\!\! \perp B$

Start with complete undirected graph and remove edges X - Y where $X \perp\!\!\!\perp Y \mid Z$ for some (potentially empty) conditioning set Z, starting with the empty conditioning set and increasing the size

$$A \perp \!\!\! \perp B \mid \{\}$$

Start with complete undirected graph and remove edges X - Y where $X \perp\!\!\!\perp Y \mid Z$ for some (potentially empty) conditioning set Z, starting with the empty conditioning set and increasing the size

$$A \perp \!\!\!\perp B \mid \{\}$$

Start with complete undirected graph and remove edges X - Y where $X \perp\!\!\!\perp Y \mid Z$ for some (potentially empty) conditioning set Z, starting with the empty conditioning set and increasing the size

$$A \perp \!\!\! \perp B \mid \{\}$$

 \forall other pairs (X,Y), $X \perp \!\!\!\perp Y \mid \{C\}$

Start with complete undirected graph and remove edges X - Y where $X \perp\!\!\!\perp Y \mid Z$ for some (potentially empty) conditioning set Z, starting with the empty conditioning set and increasing the size

True graph

$$A \perp \!\!\! \perp B \mid \{\}$$

 \forall other pairs (X,Y), $X \perp \!\!\! \perp Y \mid \{C\}$

Now for any paths X - Z - Y in our working graph where the following are true:

Now for any paths X - Z - Y in our working graph where the following are true:

1. We discovered that there is no edge between X and Y in our previous step.

Now for any paths X - Z - Y in our working graph where the following are true:

- 1. We discovered that there is no edge between X and Y in our previous step.
- 2. Z was not in the conditioning set that makes X and Y conditionally independent.

Now for any paths X - Z - Y in our working graph where the following are true:

- 1. We discovered that there is no edge between X and Y in our previous step.
- 2. Z was not in the conditioning set that makes X and Y conditionally independent.

Then, we know X - Z - Y forms an immortality.

Now for any paths X - Z - Y in our working graph where the following are true:

- 1. We discovered that there is no edge between X and Y in our previous step.
- 2. Z was not in the conditioning set that makes X and Y conditionally independent.

Then, we know X - Z - Y forms an immortality.

Now for any paths X - Z - Y in our working graph where the following are true:

- 1. We discovered that there is no edge between X and Y in our previous step.
- 2. Z was not in the conditioning set that makes X and Y conditionally independent.

Then, we know X - Z - Y forms an immortality.

Idea: use fact that we discovered all immoralities to orient more edges

Idea: use fact that we discovered all immoralities to orient more edges

Any edge Z-Y part of a partially directed path of the form $X \to Z-Y$, where there is no edge connecting X and Y can be oriented as $Z \to Y$

Idea: use fact that we discovered all immoralities to orient more edges

Any edge Z-Y part of a partially directed path of the form $X \to Z-Y$, where there is no edge connecting X and Y can be oriented as $Z \to Y$

No assumed causal sufficiency: FCI algorithm (Spirtes et al., 2001)

No assumed causal sufficiency: FCI algorithm (Spirtes et al., 2001)

No assumed acyclicity: CCD algorithm (Richardson, 1996)

No assumed causal sufficiency: FCI algorithm (Spirtes et al., 2001)

No assumed acyclicity: CCD algorithm (Richardson, 1996)

Neither causal sufficiency nor acyclicity: SAT-based causal discovery (Hyttinen et al., <u>201</u>3; <u>201</u>4)

Independence-based causal discovery algorithms rely on accurate conditional independence testing.

Independence-based causal discovery algorithms rely on accurate conditional independence testing.

Conditional independence testing is simple if we have infinite data.

Independence-based causal discovery algorithms rely on accurate conditional independence testing.

Conditional independence testing is simple if we have infinite data.

However, it is a quite hard problem with finite data, and it can sometimes require a lot of data to get accurate test results (Shah & Peters, 2020).

- 1. What are the essential graphs of the following graphs?
- 2. Walk through the steps of PC to get them.

What is the essential graph for this graph?

Independence-Based Causal Discovery

Assumptions

Markov Equivalence and Main Theorem

The PC Algorithm

Can We Do Better?

Semi-Parametric Causal Discovery

No Identifiability Without Parametric Assumptions

Linear Non-Gaussian Setting

Nonlinear Additive Noise Setting

Can We Do Better?

With faithfulness, we saw we can identify the essential graph (Markov equivalence class).

Can We Do Better?

With faithfulness, we saw we can identify the essential graph (Markov equivalence class).

If we have multinomial distributions (Meek, 1995) or linear Gaussian structural equations (Geiger & Pearl, 1988), we can only identify a graph up to its Markov equivalence class.

Can We Do Better?

With faithfulness, we saw we can identify the essential graph (Markov equivalence class).

If we have multinomial distributions (Meek, 1995) or linear Gaussian structural equations (Geiger & Pearl, 1988), we can only identify a graph up to its Markov equivalence class.

What about non-Gaussian structural equations?

Or nonlinear structural equations?

Independence-Based Causal Discovery

Assumptions

Markov Equivalence and Main Theorem

The PC Algorithm

Can We Do Better?

Semi-Parametric Causal Discovery

No Identifiability Without Parametric Assumptions

Linear Non-Gaussian Setting

Nonlinear Additive Noise Setting

Issues with Independence-Based Causal Discovery

Issues with Independence-Based Causal Discovery

• Requires faithfulness assumption

Issues with Independence-Based Causal Discovery

- Requires faithfulness assumption
- Large samples can be necessary for conditional independence tests

Issues with Independence-Based Causal Discovery

- Requires faithfulness assumption
- Large samples can be necessary for conditional independence tests
- Only identifies the Markov equivalence class

Independence-Based Causal Discovery

Assumptions

Markov Equivalence and Main Theorem

The PC Algorithm

Can We Do Better?

Semi-Parametric Causal Discovery

No Identifiability Without Parametric Assumptions

Linear Non-Gaussian Setting

Nonlinear Additive Noise Setting

Two Variable Case: Markov Equivalence

Infinite data: P(x, y)

Two Variable Case: Markov Equivalence

Infinite data: P(x, y)

Two Variable Case: Markov Equivalence

Infinite data: P(x, y)

Essential graph: (X) (Y)

Proposition: For every joint distribution P(x, y) on two real-valued random variables, there is an SCM in either direction that generates data consistent with P(x, y).

Proposition: For every joint distribution P(x, y) on two real-valued random variables, there is an SCM in either direction that generates data consistent with P(x, y).

Mathematically, there exists a function f_Y such that

$$Y = f_Y(X, U_Y), \quad X \perp \!\!\!\perp U_Y$$

and there exists a function f_X such that

$$X = f_X(Y, U_X), \quad Y \perp \!\!\!\perp U_X$$

where U_Y and U_X are real-valued random variables.

Proposition: For every joint distribution P(x, y) on two real-valued random variables, there is an SCM in either direction that generates data consistent with P(x, y).

Mathematically, there exists a function f_Y such that

$$Y = f_Y(X, U_Y), \quad X \perp \!\!\!\perp U_Y$$

and there exists a function f_X such that

$$X = f_X(Y, U_X), \quad Y \perp \!\!\!\perp U_X$$

where U_Y and U_X are real-valued random variables.

Proposition: For every joint distribution P(x, y) on two real-valued random variables, there is an SCM in either direction that generates data consistent with P(x, y).

Mathematically, there exists a function f_Y such that

$$Y = f_Y(X, U_Y), \quad X \perp \!\!\!\perp U_Y$$

and there exists a function f_X such that

$$X = f_X(Y, U_X), \quad Y \perp \!\!\!\perp U_X$$

where U_Y and U_X are real-valued random variables.

We must make assumptions about the parametric form.

Independence-Based Causal Discovery

Assumptions

Markov Equivalence and Main Theorem

The PC Algorithm

Can We Do Better?

Semi-Parametric Causal Discovery

No Identifiability Without Parametric Assumptions

Linear Non-Gaussian Setting

Nonlinear Additive Noise Setting

Recall: We cannot hope to identify the graph more precisely than the Markov equivalence class in the linear Gaussian noise setting (Geiger & Pearl, 1988).

Recall: We cannot hope to identify the graph more precisely than the Markov equivalence class in the linear Gaussian noise setting (Geiger & Pearl, 1988).

What if the noise is non-Gaussian?

Recall: We cannot hope to identify the graph more precisely than the Markov equivalence class in the linear Gaussian noise setting (Geiger & Pearl, 1988).

What if the noise is non-Gaussian?

Linear Non-Gaussian Assumption:

All structural equations (causal mechanisms that generate the data) are of the following form:

$$Y := f(X) + U$$

where f is a linear function, $X \perp \!\!\! \perp U$, and U is distributed as some non-Gaussian.

Identifiability in Linear Non-Gaussian Setting

Theorem (Shimizu et al., 2006):

In the linear non-Gaussian setting, if the true SCM is

$$Y := f(X) + U, \quad X \perp \!\!\!\perp U,$$

then there does not exist an SCM in the reverse direction,

$$X := g(Y) + \tilde{U}, \quad Y \perp L \tilde{U},$$

that can generate data consistent with P(x, y).

Identifiability in Linear Non-Gaussian Setting

Theorem (Shimizu et al., 2006):

In the linear non-Gaussian setting, if the true SCM is

$$Y := f(X) + U, \quad X \perp \!\!\! \perp U,$$

then there does not exist an SCM in the reverse direction,

$$X := g(Y) + \tilde{U}, \quad Y \perp L \tilde{U},$$

that can generate data consistent with P(x, y).

See proof in the course book

$$Y := f(X) + U$$

$$Y := f(X) + U$$

$$X := g(Y) + \tilde{U}$$

$$X := g(Y) + \tilde{U}$$

Identifiability in Linear Non-Gaussian Setting: Residuals

$$Y := f(X) + U, \quad X \perp \!\!\!\perp U$$

Identifiability in Linear Non-Gaussian Setting: Residuals

• Multivariate: Shimizu et al., (2006)

• Multivariate: Shimizu et al., (2006)

• Drop causal sufficiency assumption: <u>Hoyer et al. (2008)</u>

• Multivariate: Shimizu et al., (2006)

• Drop causal sufficiency assumption: <u>Hoyer et al. (2008)</u>

• Drop acyclicity assumption: Lacerda et al. (2008)

Independence-Based Causal Discovery

Assumptions

Markov Equivalence and Main Theorem

The PC Algorithm

Can We Do Better?

Semi-Parametric Causal Discovery

No Identifiability Without Parametric Assumptions

Linear Non-Gaussian Setting

Nonlinear Additive Noise Setting

Recall: We cannot hope to identify the graph more precisely than the Markov equivalence class in the linear Gaussian noise setting (Geiger & Pearl, 1988).

Recall: We cannot hope to identify the graph more precisely than the Markov equivalence class in the linear Gaussian noise setting (Geiger & Pearl, 1988).

What if the structural equations are nonlinear?

Recall: We cannot hope to identify the graph more precisely than the Markov equivalence class in the linear Gaussian noise setting (Geiger & Pearl, 1988).

What if the structural equations are nonlinear?

Nonlinear additive noise assumption: $\forall i$, $X_i := f_i(pa_i) + U_i$ where f_i is nonlinear

Recall: We cannot hope to identify the graph more precisely than the Markov equivalence class in the linear Gaussian noise setting (Geiger & Pearl, 1988).

What if the structural equations are nonlinear?

Nonlinear additive noise assumption: $\forall i$, $X_i := f_i(pa_i) + U_i$ where f_i is nonlinear

Theorem (Hoyer et al. 2008): Under the Markov assumption, causal sufficiency, acyclicity, the nonlinear additive noise assumption, and a technical condition from Hoyer et al. (2008), we can identify the causal graph.

Nonlinear additive noise setting: Y := f(X) + U, $X \perp \!\!\! \perp U$

Nonlinear additive noise setting: Y := f(X) + U, $X \perp \!\!\! \perp U$

$$Y := f(X) + U, \quad X \perp \!\!\!\perp U$$

Nonlinear additive noise setting: Y := f(X) + U, $X \perp \!\!\! \perp U$

$$Y := g(f(X) + U), \quad X \perp \!\!\!\perp U$$

Nonlinear additive noise setting: Y := f(X) + U, $X \perp \!\!\! \perp U$

Post-nonlinear (Zhang & Hyvärinen, 2009):

$$Y := g(f(X) + U), \quad X \perp \!\!\!\perp U$$

Review Articles and Book

• Introduction to the Foundations of Causal Discovery (Eberhardt, 2017)

• Review of Causal Discovery Methods Based on Graphical Models (Glymour, Zhang, & Spirtes, 2019)

• Elements of Causal Inference (Peters, Janzing, & Schölkopf, 2017)

Brady Neal 45 / 45