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Two interventions are sufficient and necessary to identify the graph.
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Two Variables: Two Interventions Identity the Graph

Two interventions are sufficient and necessary to identify the graph.

Interventional essential graphs
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(DB @ (




Complete Graphs Are the Worst Case




Complete Graphs Are the Worst Case

Theorem: Two graphs are Markov equivalent if and only if they have the same
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Complete Graphs Are the Worst Case

Theorem: Two graphs are Markov equivalent if and only if they have the same
skeleton and same immoralities (Verma & Pearl, 1990; Frydenburg, 1990).

In complete graphs, there are no immoralities, so we can only get the complete
skeleton graph (e.g, from PC) as the essential graph in the worse case

Immorality
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Single Variable Interventions: n — 1 Are Sufficient
for n > 2 (Eberhardt et al., 20006)

Intuition:

1. First intervention i1dentifies the adjacencies between the remaining n — 1
variables (skeleton of that subgraph).

2. i%"intervention orients the edges incident on X;
3. No intervention necessary on X, as all those edges would have been
oriented in step 2.
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Single Variable Interventions: n — 1 Are Sufficient
for n > 2 (Eberhardt et al., 20006)

Intuition:

1. First intervention identifies the adjacencies between the remaining n — 1
variables (skeleton of that subgraph).

2. i%"intervention orients the edges incident on X;
3. No intervention necessary on X, as all those edges would have been
oriented in step 2.

Note: if you include the empty set (observational), then n are necessary in the
worst case (Eberhardt et al., 2000).
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Single Variable Interventions: n — 1 Are Necessary

in the Worst Case (Complete Graph)

Intuition (Eberhardt et al., 20006):

1. Choose arbitrary intervention ordering

2. n—2 interventions leave the X, ; — X, edge undirected

3. Intervention n—1 on X, ; or X, necessary to direct this final edge

Adaptivity doesn’t help in the worst case (Eberhardt et al., 20006).
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Questions (where the goal is to identify the graph):

1. Show that n interventions are necessary in the worse case in the three-
variable setting when you use the observational data (null intervention)
as one of the interventions.

2. What 1s the minimum number of interventions necessary in the worst
case when n = 3¢

3. What 1s the minimum number of interventions necessary in the worst
case when n = 27
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Multiple-Node Interventions

Single-node interventions (Eberhardt et al., 20006):
* n — 1 are sutficient

* n — 1 are necessary in the worst case

Multi-node interventions with no restrictions on the number of nodes per
intervention:

* |logy(n)] + 1 interventions are sufficient (Eberhardt et al., 2005)

* |logy(n)| + 1 interventions are necessary in the worst case (Eberhardt et

al., 2005)
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Number of Interventions in the Worse Case

Eberhardt et al. (2005) found that [log,(n)] + 1 multi-node interventions

are necessary for worst case graphs (complete graph), but what about for
non-complete graphs?
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Eberhardt et al. (2005) found that [log,(n)] + 1 multi-node interventions
are necessary for worst case graphs (complete graph), but what about for
non-complete graphs?

Start with Markov equivalence class, then how many interventions are
necessary, given that we can intervene on unlimited nodes per
intervention?
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Number of Interventions in the Worse Case

Eberhardt et al. (2005) found that [log,(n)] + 1 multi-node interventions
are necessary for worst case graphs (complete graph), but what about for
non-complete graphs?

Start with Markov equivalence class, then how many interventions are
necessary, given that we can intervene on unlimited nodes per
intervention?

Theorem: [log,(c)| multi-node interventions are sufficient and necessary in

the worst case, where c 1s the size of the largest clique (conjectured by
Eberhardt (2008) and proven by Hauser & Buhlmann (2014)).



https://arxiv.org/abs/1207.1389
https://arxiv.org/abs/1206.3250
https://arxiv.org/abs/1205.4174

Question: A
In this graph, how many
multi-node interventions are @\ P

sufficient and necessary given p~
that you know the essential /Q\
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Number of interventions for identification (Eberhardt & Scheines, 2007):
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Number of Parametric Single-Node Interventions

Number of interventions for identification (Eberhardt & Scheines, 2007):

e n — 1 interventions are sufficient

* n — 1 interventions are necessary in the worst case

(same as with structural interventions)



https://www.cmu.edu/dietrich/philosophy/docs/scheines/PSA2006.pdf
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Partial Identification with Fewer Interventions

Can identify up to the Markov equivalence classes with only observational
data (no interventions) and no semi-parametric assumptions

Can identify the exact causal graphs with n — 1 single-variable
interventions

How about the in-between? How much of the graph can we identify with
fewer interventions?



How much of the graph can we
identity with a given set of
interventionsr
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Interventional Markov Equivalence: Single-Node

Theorem: Two graphs augmented with single-node interventions are
interventionally Markov equivalent if any only if they have the same
skeletons and immoralities (Tian & Pearl, 2001).
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Interventional Markov Equivalence: Single-Node

Theorem: Two graphs augmented with single-node interventions are
interventionally Markov equivalent if any only if they have the same
skeletons and immoralities (Tian & Pearl, 2001).

Number of interventions for identification (Eberhardt & Scheines, 2007):

* n — 1 interventions are sufficient
* n — 1 interventions are necessary in the worst case

(same as with structural interventions)
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Interventional Markov Equivalence: Multi-Node

Theorem: Given the observational data, two graphs augmented with multi-
node interventions are interventionally Markov equivalent if and only if
they have the same skeletons and immoralities (Yang et al., 2018).
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Theorem: Given the observational data, two graphs augmented with multi-
node interventions are interventionally Markov equivalent if and only if
they have the same skeletons and immoralities (Yang et al., 2018).
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Theorem: Given the observational data, two graphs augmented with multi-
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they have the same skeletons and immoralities (Yang et al., 2018).
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Interventional Markov Equivalence: Multi-Node

Theorem: Given the observational data, two graphs augmented with multi-
node interventions are interventionally Markov equivalent if and only if
they have the same skeletons and immoralities (Yang et al., 2018).
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Interventional Markov Equivalence: Multi-Node

Theorem: Given the observational data, two graphs augmented with multi-
node interventions are interventionally Markov equivalent if and only if
they have the same skeletons and immoralities (Yang et al., 2018).

Structural/perfect analog from Hauser & Bihlmann (2012)
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Questions

1. How many parametric single-node interventions are
necessary and sufficient for identifying a directed
acyclic graph?

2. What 1s the essential graph of the graph on the right

(ignoring the intervention node)?
3. What is the interventional essential graph?

What is a graph that this graph is interventionally
Markov equivalent to?




Structural Interventions

Single-Node Interventions

Multi-Node Interventions

Parametric Interventions
Interventional Markov Equivalence
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* Randomized algorithms
* Only need O(log log n) interventions with high probability (Hu et al., 2014)
* Better than O(log c) from Eberhardt (2008) and Hauser & Buhlmann (2014)

* Intervene on at most k variables per intervention: Shanmugam et al. (2015)

n

* Worst case: ~ o

* Randomized: O(%loglogk)

* Only k interventions: Ghassami et al. (2018)
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Miscellaneous Other Settings

* Randomized algorithms
* Only need O(log log n) interventions with high probability (Hu et al., 2014)
* Better than O(log c) from Eberhardt (2008) and Hauser & Buhlmann (2014)

* Intervene on at most k variables per intervention: Shanmugam et al. (2015)

n

* Worst case: ~ o

* Randomized: O(%loglogk)

* Only k interventions: Ghassami et al. (2018)

* Unobserved confounding: Kocaoglu et al. (2017)
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