Transfer Learning and
Transportability

Brady Neal

causalcourse.com



http://causalcourse.com/

Causal Insights for Transfer Learning

Transportability of Causal Effects Across Populations




Causal Insights for Transfer Learning




Transfer Learning

gl ElIl Il Il I I I I I S S S S S S S S S - - -

Transfer




Domain Generalization

gl ElIl Il Il I I I I I S S S S S S S S S - - -

Transfer




Domain Generalization




Domain Generalization




Domain Generalization

Ptrain (337 y>

Transfer




Domain Generalization

Ptrain (337 y>

Transfer

Ptest (377 y) l




Domain Generalization

P, train (337 y>
o Transfer

Ptest (377 y) l




Covariate Shift

Setting: Pirain (%, y) # Prest(T,y)




Covariate Shift

Setting: Pirain (%, y) # Prest(T,y)
Goal: Model Eiest (Y | ) only given access to Pirain (2, Y)




Covariate Shift

Setting: Pirain (%, y) # Prest(T,y)
Goal: Model Eiest (Y | ) only given access to Pirain (2, Y)

Covariate Shift Assumption: Piain(y | ) = Piest(y | )




Covariate Shift

Setting: Pirain (%, y) # Prest(T,y)
Goal: Model Eiest (Y | ) only given access to Pirain (2, Y)

Covariate Shift Assumption: Piain(y | ) = Piest(y | )
Ptrain(x) ?é Ptest (33)




Covariate Shift

Setting: Pirain (%, y) # Prest(T,y)
Goal: Model Eiest (Y | ) only given access to Pirain (2, Y)

Covariate Shift Assumption: Piain(y | ) = Piest(y | )
Ptrain(x) ?é Ptest (33)




Covariate Shift

Setting: Pirain (%, y) # Prest(T,y)
Goal: Model Eiest (Y | ) only given access to Pirain (2, Y)

Covariate Shift Assumption: Piain(y | ) = Piest(y | )
Ptrain (37) ?é Ptest (33)

IEj’train (Y ‘ 33)




Covariate Shift

Setting: Pirain (%, y) # Prest(T,y)
Goal: Model Eiest (Y | ) only given access to Pirain (2, Y)

Covariate Shift Assumption: Piain(y | ) = Piest(y | )
Ptrain (33) ?é Ptest (33)

IE:train(Yv ’ 33) IE’l:est (Y ’ 55)




Covariate Shift

Setting: Pirain (%, y) # Prest(T,y)
Goal: Model Eiest (Y | ) only given access to Pirain (2, Y)

Covariate Shift Assumption: Piain(y | ) = Piest(y | )
Ptrain (33) ?é Ptest (33)

IE:train(Yv ’ 33) IEtest (Y ’ ZE)

VAV N\

X X




Covariate Shift

Setting: Pirain (%, y) # Prest(T,y)
Goal: Model Eiest (Y | ) only given access to Pirain (2, Y)

Covariate Shift Assumption: Piain(y | ) = Piest(y | )
- (33) # Piest (5’3)
SUDPP4yain () = SUPDyest (7)

IE:train(Yv ’ 33) IEtest (Y ’ ZE)

VAV N\

X X




Covariate Shift

Setting: Pirain (%, y) # Prest(T,y)
Goal: Model Eiest (Y | ) only given access to Pirain (2, Y)

Covariate Shift Assumption: Piain(y | ) = Piest(y | )
- (33) # Piest (5’3)
SUDPP4yain () = SUPDyest (7)

IE:train(Yv ’ 33) IEtest (Y ’ ZE)
# %

X X




HAT IF1JUST COPY'PASTE IT

Covaria

Setting: Piyai,
Goal: Model
Covariate Sh




Predicting Y from an Unstructured Vector




Predicting Y from an Unstructured Vector

X




Predicting Y from an Unstructured Vector

X




Use the Causal Structure




In-distribution Prediction of Y — Markov Blanket

®®@ ®®

@ @

(Xiz
<




In-distribution Prediction of Y — Markov Blanket

Training data from Pipain (2, y) @ @
(X (X3, (X5 (X0)
(X0 (X0

@ a

(Xiz
<




In-distribution Prediction of Y — Markov Blanket

Training data from Pipain (2, y)

(X3 (X0
Goal: in-distribution @ @ @ @

prediction of Y from
out-of-sample data for X @ a @

) (Xiz (X




In-distribution Prediction of Y — Markov Blanket

Training data from Pipain (2, y)

(X3 (X0
Goal: in-distribution @ @ @ @

prediction of Y from
out-of-sample data for X @ e @

) (Xiz (X




In-distribution Prediction of Y — Markov Blanket

Training data from Piyain(2,Yy)

Goal: in-distribution
prediction of Y from
out-of-sample data for X

Question: What 1s the minimum
set of variables that will give us
optimal prediction?




In-distribution Prediction of Y — Markov Blanket

Training data from Piyain(2,Yy)

Goal: in-distribution
prediction of Y from
out-of-sample data for X

Question: What 1s the minimum
set of variables that will give us
optimal prediction?




In-distribution Prediction of Y — Markov Blanket

Training data from Piyain(2,Yy)

Goal: in-distribution
prediction of Y from
out-of-sample data for X

Question: What 1s the minimum
set of variables that will give us
optimal prediction?




In-distribution Prediction of Y — Markov Blanket

Training data from Piyain(2,Yy)

Goal: in-distribution
prediction of Y from
out-of-sample data for X

Question: What 1s the minimum
set of variables that will give us
optimal prediction?




Other Tasks Generated via Interventions

Training data from Pipain (2, y)

(X3 (X0
Goal: in-distribution @ @ @ @

prediction of Y from
out-of-sample data for X @ e @

) (Xiz (X




Other Tasks Generated via Interventions

Training data from Pipain (2, y)

(X3 (X, (x5 (X0
Goal: prediction of Y @ @

from X sampled from
Ptest (37, y) @ e

) (Xiz (X




Other Tasks Generated via Interventions

Training data from Piyain(2,Yy)

Goal: prediction of Y
from X sampled from

Ptest (37 y

Consider that are all test
distributions are generated by

interventions on this graph
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Causal Mechanism 1s Optimal in Robust Sense

E[Y | pa(Y)] = arg min max B(x vy~ . (Y — f(X))’

(see, e.g., Rojas-Carulla et al., (2018, Appendix A.1))

Still requires common support: SUpPPy,ain(Pa(Y)) = supp;eq (Pa(Y))

Or that we can extrapolate well from supp;,,i,(Pa(Y)) to supp;e (Pa(Y’))


https://jmlr.org/papers/v19/16-432.html
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Relaxation of Covariate Shift

Covariate shift: Piain(y | ) = Piest (¥ | @)

Modularity: P (y | pa(Y)) = Prest (v | pa(Y))




(Questions:

1. What is the Markov blanket of Y in this graph?
2. What task is the Markov blanket good for?

3. What input variables should we use for optimal robust prediction?
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Selection Diagrams

Allow for different causal mechanisms across the two distributions

Mechanism that differs between II and IT*

Absence of S encodes invariance

P*(y | do(t),z) = P(y | do(t), z, s7)




Direct Transportability (External Validity)




Direct Transportability (External Validity)

P(y | do(t),z) = P*(y | do(t), x)
if Y g S|T,X




Direct Transportability (External Validity)

P(y | do(t),z) = P*(y | do(t), x)
if Y g S|T,X

Proof:




Direct Transportability (External Validity)

P(y | do(t),z) = P*(y | do(t), x)
if Y g S|T,X

Proof:
P*(y | do(t),z) = P(y | do(¢),x,s")




Direct Transportability (External Validity)

P(y | do(t),z) = P*(y | do(t), x)
if Y g S|T,X

Proof:
P*(y | do(t),z) = P(y | do(¢),x,s")




Direct Transportability (External Validity)

P(y | do(t),z) = P*(y | do(t), x)
if Y g S|T,X S

Proof:
P*(y | do(t),z) = P(y | do(¢),x,s")




Direct Transportability (External Validity)

P(y | do(t),z) = P*(y | do(t), x) P(y | do(t),x) # P*(y | do(t), z)

|
ifY Al S|T,X @ﬁ\;
Proof: g "2

P*(y | do(t),z) = P(y | do(¢),x,s")
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* Don’t have direct transportability: P(y | do(t),x) # P*(y | do(t), x)
* Have access to observational data from target population: P*(y,t,x)

* Can identify estimand using only target data: P*(y | do(t),z) = P*(y | t, x)

Identify P*(y | do(t))?

Combine aspects of
trivial and direct (73

transportability \
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S-Admissibility and Transport Formula

S-Admissibility: A set of variables W 1s S-admissible if Y g S| T, W

Transport Result: If W 1s S-admissible, then

P*(y | do(t) ZPy[do

Note: Another word for “sufficient adjustment set”
from week 4 1s “admissible set.”

Main Paper: Pearl & Bareinboim (2014)



https://arxiv.org/abs/1503.01603

(Questions:

1. Descri

be direct transporta

2. Descri

be trivial transporta

b1

ity in your own words.

b1,

ity 1n your own words.

3. Prove the transport result on the previous slide.



