Transfer Learning and Transportability

Brady Neal

causalcourse.com
Causal Insights for Transfer Learning

Transportability of Causal Effects Across Populations
Causal Insights for Transfer Learning

Transportability of Causal Effects Across Populations
Transfer Learning

Task 1

Training Data 1 → Model 1

Task 2

Training Data 2 → Model 2

Transfer
Domain Generalization

Task 1

Training Data 1 → Model 1

Task 2

Transfer

Training Data 2 → Model 2

Causal Insights for Transfer Learning
Domain Generalization

Task 1

Training Data 1 → Model

Transfer

Training Data 2

Task 2
Domain Generalization

Task 1

Training Data → Model

Task 2

Test Data

Transfer
Domain Generalization

Task 1

Training Data

\(P_{\text{train}}(x, y) \)

Model

Transfer

Task 2

Test Data

Causal Insights for Transfer Learning
Domain Generalization

Task 1

Training Data

Task 2

Test Data

Model

\(P_{\text{train}}(x, y) \)

\(P_{\text{test}}(x, y) \)

Transfer
Domain Generalization

Task 1

Training Data

$P_{\text{train}}(x, y)$

\neq

$P_{\text{test}}(x, y)$

Model

Transfer

Task 2

Test Data

Causal Insights for Transfer Learning
Covariate Shift

Setting: \(P_{\text{train}}(x, y) \neq P_{\text{test}}(x, y) \)
Covariate Shift

Setting: $P_{\text{train}}(x, y) \neq P_{\text{test}}(x, y)$

Goal: Model $\mathbb{E}_{\text{test}}(Y \mid x)$ only given access to $P_{\text{train}}(x, y)$
Covariate Shift

Setting: $P_{\text{train}}(x, y) \neq P_{\text{test}}(x, y)$

Goal: Model $\mathbb{E}_{\text{test}}(Y \mid x)$ only given access to $P_{\text{train}}(x, y)$

Covariate Shift Assumption: $P_{\text{train}}(y \mid x) = P_{\text{test}}(y \mid x)$
Covariate Shift

Setting: $P_{\text{train}}(x, y) \neq P_{\text{test}}(x, y)$

Goal: Model $\mathbb{E}_{\text{test}}(Y \mid x)$ only given access to $P_{\text{train}}(x, y)$

Covariate Shift Assumption: $P_{\text{train}}(y \mid x) = P_{\text{test}}(y \mid x)$

$P_{\text{train}}(x) \neq P_{\text{test}}(x)$
Covariate Shift

Setting: \(P_{\text{train}}(x, y) \neq P_{\text{test}}(x, y) \)

Goal: Model \(\mathbb{E}_{\text{test}}(Y \mid x) \) only given access to \(P_{\text{train}}(x, y) \)

Covariate Shift Assumption:
\[
P_{\text{train}}(y \mid x) = P_{\text{test}}(y \mid x) \\
P_{\text{train}}(x) \neq P_{\text{test}}(x)
\]
Covariate Shift

Setting: \(P_{\text{train}}(x, y) \neq P_{\text{test}}(x, y) \)

Goal: Model \(\mathbb{E}_{\text{test}}(Y \mid x) \) only given access to \(P_{\text{train}}(x, y) \)

Covariate Shift Assumption: \(P_{\text{train}}(y \mid x) = P_{\text{test}}(y \mid x) \)

\[
\mathbb{P}_{\text{train}}(x) \neq \mathbb{P}_{\text{test}}(x)
\]
Covariate Shift

Setting: \(P_{\text{train}}(x, y) \neq P_{\text{test}}(x, y) \)

Goal: Model \(\mathbb{E}_{\text{test}}(Y \mid x) \) only given access to \(P_{\text{train}}(x, y) \)

Covariate Shift Assumption: \(P_{\text{train}}(y \mid x) = P_{\text{test}}(y \mid x) \)
\(P_{\text{train}}(x) \neq P_{\text{test}}(x) \)
Covariate Shift

Setting: \(P_{\text{train}}(x, y) \neq P_{\text{test}}(x, y) \)

Goal: Model \(\mathbb{E}_{\text{test}}(Y \mid x) \) only given access to \(P_{\text{train}}(x, y) \)

Covariate Shift Assumption: \(P_{\text{train}}(y \mid x) = P_{\text{test}}(y \mid x) \)
\(P_{\text{train}}(x) \neq P_{\text{test}}(x) \)
Covariate Shift

Setting: \(P_{\text{train}}(x, y) \neq P_{\text{test}}(x, y) \)

Goal: Model \(\mathbb{E}_{\text{test}}(Y \mid x) \) only given access to \(P_{\text{train}}(x, y) \)

Covariate Shift Assumption:
\[
\begin{align*}
P_{\text{train}}(y \mid x) &= P_{\text{test}}(y \mid x) \\
P_{\text{train}}(x) &= P_{\text{test}}(x) \\
\text{supp}_{\text{train}}(x) &= \text{supp}_{\text{test}}(x)
\end{align*}
\]
Covariate Shift

Setting: \(P_{\text{train}}(x, y) \neq P_{\text{test}}(x, y) \)

Goal: Model \(\mathbb{E}_{\text{test}}(Y \mid x) \) only given access to \(P_{\text{train}}(x, y) \)

Covariate Shift Assumption: \(P_{\text{train}}(y \mid x) = P_{\text{test}}(y \mid x) \)
\[
P_{\text{train}}(x) \neq P_{\text{test}}(x)
\]
\[
\text{supp}_{\text{train}}(x) = \text{supp}_{\text{test}}(x)
\]
Covariate Shift

Setting: $P_{\text{train}}(x) \neq P_{\text{test}}(x)$

Goal: Model $P_{\text{test}}(y|x)$ only given access to $P_{\text{train}}(y|x)$

Covariate Shift Assumption:

$$P_{\text{train}}(y|x) = P_{\text{test}}(y|x)$$

Supplementary:

$$E_{\text{train}}(Y|x) = E_{\text{test}}(Y|x)$$
Predicting Y from an Unstructured Vector

$\mathbb{E}_{\text{train}}(Y \mid x)$

x
Predicting Y from an Unstructured Vector

$E_{\text{train}}(Y \mid x)$
Predicting Y from an Unstructured Vector

$E_{\text{train}}(Y \mid x)$

x
Use the Causal Structure
In-distribution Prediction of Y – Markov Blanket
In-distribution Prediction of Y – Markov Blanket

Training data from $P_{\text{train}}(x, y)$
In-distribution Prediction of Y – Markov Blanket

Training data from $P_{\text{train}}(x, y)$

Goal: in-distribution prediction of Y from out-of-sample data for X
In-distribution Prediction of Y – Markov Blanket

Training data from $P_{\text{train}}(x, y)$

Goal: in-distribution prediction of Y from out-of-sample data for X
In-distribution Prediction of Y – Markov Blanket

Training data from $P_{\text{train}}(x, y)$

Goal: in-distribution prediction of Y from out-of-sample data for X

Question: What is the minimum set of variables that will give us optimal prediction?
In-distribution Prediction of Y – Markov Blanket

Training data from $P_{\text{train}}(x, y)$

Goal: in-distribution prediction of Y from out-of-sample data for X

Question: What is the minimum set of variables that will give us optimal prediction?
In-distribution Prediction of Y – Markov Blanket

Training data from $P_{\text{train}}(x, y)$

Goal: in-distribution prediction of Y from out-of-sample data for X

Question: What is the minimum set of variables that will give us optimal prediction?
In-distribution Prediction of Y – Markov Blanket

Training data from $P_{\text{train}}(x, y)$

Goal: in-distribution prediction of Y from out-of-sample data for X

Question: What is the minimum set of variables that will give us optimal prediction?
Other Tasks Generated via Interventions

Training data from $P_{\text{train}}(x, y)$

Goal: in-distribution prediction of Y from out-of-sample data for X
Other Tasks Generated via Interventions

Training data from $P_{\text{train}}(x, y)$

Goal: prediction of Y from X sampled from $P_{\text{test}}(x, y)$
Other Tasks Generated via Interventions

Training data from $P_{\text{train}}(x, y)$

Goal: prediction of Y from X sampled from $P_{\text{test}}(x, y)$

Consider that all test distributions are generated by interventions on this graph.
Recall Modularity
Recall Modularity

Intervening on a variable only changes the causal mechanism (structural equation) for that variable. All other causal mechanisms remain unchanged.
Recall Modularity

Intervening on a variable only changes the causal mechanism (structural equation) for that variable. All other causal mechanisms remain unchanged.

Mechanism for Y:

$$P(y \mid x_4, x_5)$$
Recall Modularity

Intervening on a variable only changes the causal mechanism (structural equation) for that variable. All other causal mechanisms remain unchanged.

Mechanism for Y:
$$P(y \mid x_4, x_5)$$
Recall Modularity

Intervening on a variable only changes the causal mechanism (structural equation) for that variable. All other causal mechanisms remain unchanged.

Mechanism for Y:
\[P(y \mid x_4, x_5) \]
Recall Modularity

Intervening on a variable only changes the causal mechanism (structural equation) for that variable. All other causal mechanisms remain unchanged.

Mechanism for Y: $P(y \mid x_4, x_5)$
Recall Modularity

Intervening on a variable only changes the causal mechanism (structural equation) for that variable. All other causal mechanisms remain unchanged.

Mechanism for Y: $P(y \mid x_4, x_5)$

Non-causal conditional: $P(y \mid x_4, x_5, x_{12})$
Recall Modularity

Intervening on a variable only changes the causal mechanism (structural equation) for that variable. All other causal mechanisms remain unchanged.

Mechanism for Y:
\[P(y | x_4, x_5) \]

Non-causal conditional:
\[P(y | x_4, x_5, x_{12}) \]
Causal Mechanism is Optimal in Robust Sense
Causal Mechanism is Optimal in Robust Sense

\[\mathbb{E}[Y \mid \text{pa}(Y)] = \arg \min_{f} \max_{P_{\text{test}}} \mathbb{E}_{(X,Y) \sim P_{\text{test}}} (Y - f(X))^2 \]

(see, e.g., Rojas-Carulla et al., (2018, Appendix A.1))
Causal Mechanism is Optimal in Robust Sense

\[\mathbb{E}[Y \mid \text{pa}(Y)] = \underset{f}{\arg \min} \max_{P_{\text{test}}} \mathbb{E}_{(X,Y) \sim P_{\text{test}}} (Y - f(X))^2 \]

(see, e.g., Rojas-Carulla et al., (2018, Appendix A.1))

Still requires common support: \(\text{supp}_{\text{train}}(\text{pa}(Y)) = \text{supp}_{\text{test}}(\text{pa}(Y)) \)
Causal Mechanism is Optimal in Robust Sense

\[\mathbb{E}[Y \mid \text{pa}(Y)] = \arg \min_f \max_{P_{\text{test}}} \mathbb{E}_{(X,Y) \sim P_{\text{test}}} (Y - f(X))^2 \]

(see, e.g., Rojas-Carulla et al., (2018, Appendix A.1))

Still requires common support: \(\text{supp}_{\text{train}}(\text{pa}(Y)) = \text{supp}_{\text{test}}(\text{pa}(Y)) \)

Or that we can extrapolate well from \(\text{supp}_{\text{train}}(\text{pa}(Y)) \) to \(\text{supp}_{\text{test}}(\text{pa}(Y)) \)
Relaxation of Covariate Shift
Relaxation of Covariate Shift

Covariate shift: \[P_{\text{train}}(y \mid x) = P_{\text{test}}(y \mid x) \]
Relaxation of Covariate Shift

Covariate shift: \(P_{\text{train}}(y \mid x) = P_{\text{test}}(y \mid x) \)

Modularity: \(P_{\text{train}}(y \mid \text{pa}(Y)) = P_{\text{test}}(y \mid \text{pa}(Y)) \)
Questions:
1. What is the Markov blanket of Y in this graph?
2. What task is the Markov blanket good for?
3. What input variables should we use for optimal robust prediction?
Causal Insights for Transfer Learning

Transportability of Causal Effects Across Populations
Transportability Problem
Transportability Problem

Source Population II
Transportability Problem

Source Population Π

Target Population Π∗
Transportability Problem

Source Population Π

$P(y, t, \ldots)$

Target Population Π^*

\equiv
Transportability Problem

Source Population Π

$P(y, t, \ldots)$

Target Population Π^*

$P^*(y, t, \ldots)$
Transportability Problem

Source Population Π

$P(y, t, \ldots)$

Target Population Π^*

$P^*(y, t, \ldots)$

Given $P(y \mid do(t), x)$
Transportability Problem

Source Population \(\Pi \)

\[P(y, t, \ldots) \]

Given: \(P(y \mid do(t), x) \)

Target Population \(\Pi^* \)

\[P^*(y, t, \ldots) \]

Goal: \(P^*(y \mid do(t), x) \)
Transportability Problem

Source Population Σ

\[P(y, t, \ldots) \]

Given $P(y \mid do(t), x)$

Target Population Σ^*

\[P^*(y, t, \ldots) \]

$P(y \mid do(t), x) \overset{?}{=} P^*(y \mid do(t), x)$
Selection Diagrams
Selection Diagrams

Allow for different causal mechanisms across the two distributions
Selection Diagrams

Allow for different causal mechanisms across the two distributions
Selection Diagrams

Allow for different causal mechanisms across the two distributions

Mechanism that differs between Π and Π^*

Transportability of Causal Effects Across Populations
Selection Diagrams

Allow for different causal mechanisms across the two distributions

Mechanism that differs between Π and Π^*
Selection Diagrams

Allow for different causal mechanisms across the two distributions

Mechanism that differs between Π and Π^*
Selection Diagrams

Allow for different causal mechanisms across the two distributions

Mechanism that differs between Π and Π^*

Absence of S encodes invariance
Selection Diagrams

Allow for different causal mechanisms across the two distributions

Mechanism that differs between Π and Π^*

Absence of S encodes invariance

$$P^*(y \mid do(t), x) \triangleq P(y \mid do(t), x, s^*)$$
Direct Transportability (External Validity)

\[P(y \mid do(t), x) = P^*(y \mid do(t), x) \]
Direct Transportability (External Validity)

\[P(y \mid do(t), x) = P^*(y \mid do(t), x) \]

if \(Y \perp_{G_T} S \mid T, X \)
Direct Transportability (External Validity)

\[P(y \mid do(t), x) = P^*(y \mid do(t), x) \]
\[\text{if } Y \perp_{G_T} S \mid T, X \]

Proof:
Direct Transportability (External Validity)

\[P(y \mid do(t), x) = P^*(y \mid do(t), x) \]

if \(Y \independent_{G_T} S \mid T, X \)

Proof:
\[P^*(y \mid do(t), x) = P(y \mid do(t), x, s^*) \]
Direct Transportability (External Validity)

\[P(y \mid do(t), x) = P^*(y \mid do(t), x) \]

if \(Y \perp_{G_T} S \mid T, X \)

Proof:
\[P^*(y \mid do(t), x) = P(y \mid do(t), x, s^*) \]
\[= P(y \mid do(t), x) \]
Direct Transportability (External Validity)

\[P(y \mid do(t), x) = P^*(y \mid do(t), x) \]
\[\text{if } Y \perp_{G_T} S \mid T, X \]

Proof:
\[P^*(y \mid do(t), x) = P(y \mid do(t), x, s^*) \]
\[= P(y \mid do(t), x) \]
Direct Transportability (External Validity)

\[P(y \mid do(t), x) = P^*(y \mid do(t), x) \]

if \(Y \perp_{G_T} S \mid T, X \)

Proof:

\[P^*(y \mid do(t), x) = P(y \mid do(t), x, s^*) \]
\[= P(y \mid do(t), x) \]

\[P(y \mid do(t), x) \neq P^*(y \mid do(t), x) \]
Trivial Transportability

- Don’t have direct transportability: \(P(y \mid do(t), x) \neq P^*(y \mid do(t), x) \)
Trivial Transportability

• Don’t have direct transportability: \(P(y \mid do(t), x) \neq P^*(y \mid do(t), x) \)
• Have access to observational data from target population: \(P^*(y, t, x) \)
Trivial Transportability

- Don’t have direct transportability: $P(y \mid do(t), x) \neq P^*(y \mid do(t), x)$
- Have access to observational data from target population: $P^*(y, t, x)$
- Can identify estimand using only target data: $P^*(y \mid do(t), x) = P^*(y \mid t, x)$
Trivial Transportability

• Don’t have direct transportability: $P(y \mid do(t), x) \neq P^*(y \mid do(t), x)$
• Have access to observational data from target population: $P^*(y, t, x)$
• Can identify estimand using only target data: $P^*(y \mid do(t), x) = P^*(y \mid t, x)$

Identify $P^*(y \mid do(t))$?
Trivial Transportability

• Don’t have direct transportability: \(P(y \mid do(t), x) \neq P^*(y \mid do(t), x) \)
• Have access to observational data from target population: \(P^*(y, t, x) \)
• Can identify estimand using only target data: \(P^*(y \mid do(t), x) = P^*(y \mid t, x) \)

Identify \(P^*(y \mid do(t)) \)?

Combine aspects of trivial and direct transportability
S-Admissibility and Transport Formula

\[S \rightarrow T \rightarrow U \rightarrow X \rightarrow Y \]
S-Admissibility and Transport Formula

S-Admissibility: A set of variables W is S-admissible if $Y \perp_{G_T} S \mid T, W$
S-Admissibility and Transport Formula

S-Admissibility: A set of variables W is S-admissible if $Y \perp_{G_T} S \mid T, W$

Transport Result: If W is S-admissible, then

$$P^*(y \mid do(t)) = \sum_w P(y \mid do(t), w) P^*(w)$$
S-Admissibility and Transport Formula

S-Admissibility: A set of variables W is S-admissible if $Y \perp_{G_T} S \mid T, W$

Transport Result: If W is S-admissible, then

$$P^*(y \mid do(t)) = \sum_w P(y \mid do(t), w) P^*(w)$$

Note: Another word for “sufficient adjustment set” from week 4 is “admissible set.”
S-Admissibility and Transport Formula

S-Admissibility: A set of variables W is S-admissible if $Y \perp_{G_{T}} S \mid T, W$

Transport Result: If W is S-admissible, then

$$P^*(y \mid do(t)) = \sum_{w} P(y \mid do(t), w) P^*(w)$$

Note: Another word for “sufficient adjustment set” from week 4 is “admissible set.”

Main Paper: Pearl & Bareinboim (2014)
Questions:
1. Describe direct transportability in your own words.
2. Describe trivial transportability in your own words.
3. Prove the transport result on the previous slide.