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We can compute counterfactuals
using a parametric SCM.
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Counterfactual: P(Y(t) | T =t,Y =)
I

hypothetical condition

Different from CATE: E[Y () | X = 2] = E[Y | do(t), X = 7]

Cannot express counterfactuals using do-notation
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Roadmap for Computing Counterfactuals

Given: Observation of (I, Y) (observation of potential outcome Y|(t)
where t 1s the observed value of T)

Main ingredient necessary: correct parametric model for the structural
equation for Y

Result: access to counterfactuals Y (t) at the unit-level
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General Steps for Deterministic Counterfactuals

From Chapter 4 of Pearl et al. (2016)’s Primer:
1. Abduction: Use an observation to determine the value of U

2. Action: Modify the SCM, by replacing the structural equation for T
with T :=t

3. Prediction: Use the value of U from step 1 and the modified SCM
from step 2 to compute the value of Y(t)


http://bayes.cs.ucla.edu/PRIMER/

(Question:

Given the observation T = 1 and Y = 0, compute
Y (0) for this individual given the following SCM:

1 = ...
Y =UT'+(1-U)1-T)
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Structural equation for Y:

(1 U = always happy P(U = always happy) = 0.3

Y = 4 0 U = never happy P(U = never happy) = 0.2

I U = dog-needer P(U = dog-needer) = 0.4

(1 =T U = dog-hater P(U = dog-hater) = 0.1
: P(U =never happy | T =1,Y =0) = 0z 2
Observation: T=1and Y =0 0.2 +1().1 ?
(Yu(1) =0) P(U = dog-hater | T =1,Y =0) = 0.20_;_ ==z

Yu(0) =2 P(Y,(0) = 1) =
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General Steps for Probabilistic Counterfactuals

From Chapter 4 of Pearl et al. (2016)’s Primer:
1. Abduction: Use an observation Z to update the distribution of U:

P(U | Z)
2. Action: Modify the SCM, by replacing the structural equation for T
with T :=t

3. Prediction: Use the the updated distribution of U step 1 and the
modified SCM from step 2 to compute the distribution of Y(t)


http://bayes.cs.ucla.edu/PRIMER/
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No Unit-Level Counterfactuals without
Parametric Model

Main ingredient necessary for computing counterfactuals:
parametric model for the structural equation for Y

Strong assumption

Without it, we are stuck with the fundamental problem of causal
inference.



(Question:
Given the observation T = 1 and Y = 1, compute
Y (0) for this individual given the following SCM

and prior:

(1 U = always happy P(U = always happy) = 0.3

Y = | 0 U = never happy P(U = never happy) = 0.2
T U = dog-needer P(U = dog-needer) = 0.4

(1 =1 U = dog-hater P(U = dog-hater) = 0.1
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Population-Level Doesn’t Require a Parametric Model

Population-level counterfactual: E[Y (¢) | T = t']

Just like we were able to identify the ATE E[Y (1) — Y (0)]
nonparametrically (using just the causal graph), we can do the same with
population-level counterfactual quantities, if they are identifiable

Same with CATEs: E[Y (1) — Y(0) | X = z]

See Malinsky et al. (2019)’s potential outcome calculus (generalization of
do-calculus) for general identification of counterfactual quantities
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How can we measure
the direct effect?

“Direct effect”
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Q Q Problems:
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Natural Direct and Indirect Effects

Subscript notation:

E[Yym] 2 E[Y | do(T = t,M =m)]  E[M,] 2 E[M | do(T = t)

CDE = E[Y1 ,, — Yo.m)
NDE £ E[Y1 ar, — Yo 01,
NIE £ E[Yy s, — Yo. 01, ]

TE = NDE — NIE,
For example in linear setting, TE = NDE + NIE

Recall problems with CDE:

* CDE is specific to the
arbitrary choice of m

* How do we get the indirect
effect? Can’t just subtract the
CDE from the total effect



(Question:
Show that TE = NDE — NIE, .,
where NIE, = E[Y] v, — Y11, ]-
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Comparison of Controlled vs. Natural Mediation

CDE can always be measured via experiments (do-operator), but it has no
clear undirect effect since there 1s no decomposition

NDE cannot always be measured via experiments since it is counterfactual,
but 1t allows for the complete decomposition of the total effect into the
NDE and NIE, which is what we’d like in mediation analysis
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3. P(M=m]|do(T =0),W = ds)identifiable (e.g. no unblockable backdoor paths from T to M)
4. E[Y | do(T =t,M =m),W = isg|identifiable (e.g. no unblockable backdoors paths from T to Y)

NDE =) > (B[Y |do(T =1,M =m),W =w] —E[Y | do(T =0, M =m), W = w))

X P(IM=m|do(T=0),W =w)P(W =w)
=) Y EBY|T=1,M=mW=w]-E[Y |T=0,M=mW =uw)

X PIM=m|T=0W=w)P(W =w)



When We Can Measure NDE and NIE

Adjustment set W

Sufficient conditions for identifying NDE: TE = NDE — NIE,
1. No member of W is a descendant of T

W blocks all backdoor paths from M to Y

2
3. P(M=m]|do(T =0),W = ds)identifiable (e.g. no unblockable backdoor paths from T to M)
4. E[Y | do(T =t,M =m),W = isg|identifiable (e.g. no unblockable backdoors paths from T to Y)

NDE =) > (B[Y |do(T =1,M =m),W =w] —E[Y | do(T =0, M =m), W = w))

X P(IM=m|do(T=0),W =w)P(W =w)
=) Y EBY|T=1,M=mW=w]-E[Y |T=0,M=mW =uw)

X PIM=m|T=0W=w)P(W =w)



Question:

Come up with your own example of mediation
and the corresponding graph. Then, determine
whether you can identity the NDE and NIE

from observational data.




Path-Specitic Etfects

Measure causal effects along arbitrary path or set of paths in the causal

graph

See “Identifiability of Path-Specific Effects” (Avin et al., 2005)



https://ftp.cs.ucla.edu/pub/stat_ser/r321-ijcai05.pdf

