Counterfactuals and Mediation

Brady Neal

causalcourse.com
Counterfactuals Basics

Important Application: Mediation
Counterfactuals Basics

Important Application: Mediation
Fundamental Problem of Causal Inference

do($T = 1$) \[Y_i(1) = 1 \]

do($T = 0$) \[Y_i(0) = 0 \]

Causal effect \[Y_i(1) - Y_i(0) = 1 \]
Fundamental Problem of Causal Inference

Counterfactual

do\((T = 1) \) \(Y_i(1) = 1 \)

Causal effect
\[Y_i(1) - Y_i(0) = 1 \]

Factual

do\((T = 0) \) \(Y_i(0) = 0 \)

\(T \) : observed treatment
\(Y \) : observed outcome
\(i \) : used in subscript to denote a specific unit/individual
\(Y_i(1) \) : potential outcome under treatment
\(Y_i(0) \) : potential outcome under no treatment
Fundamental Problem of Causal Inference

Factual

\[\text{do}(T = 1) \quad Y_i(1) = 1 \]

Counterfactual

\[\text{do}(T = 0) \quad Y_i(0) = 0 \]

Causal effect

\[Y_i(1) - Y_i(0) = 1 \]

- \(T \): observed treatment
- \(Y \): observed outcome
- \(i \): used in subscript to denote a specific unit/individual
- \(Y_i(1) \): potential outcome under treatment
- \(Y_i(0) \): potential outcome under no treatment

Counterfactuals Basics
We can compute counterfactuals using a parametric SCM.
Counterfactuals

Counterfactual: $P(Y(t) \mid T = t', Y = y')$
Counterfactuals

Counterfactual: \(P(Y(t) \mid T = t', Y = y') \)
Counterfactuals

Counterfactual: $P(Y(t) \mid T = t', Y = y')$
Counterfactuals

Counterfactual: $P(Y(t) \mid T = t', Y = y')$

Different from CATE: $\mathbb{E}[Y(t) \mid X = x]$
Counterfactuals

Counterfactual: $P(Y(t) \mid T = t', Y = y')$

Different from CATE: $\mathbb{E}[Y(t) \mid X = x] = \mathbb{E}[Y \mid do(t), X = x]$
Counterfactuals

Counterfactual: $P(Y(t) \mid T = t', Y = y')$

Different from CATE: $\mathbb{E}[Y(t) \mid X = x] = \mathbb{E}[Y \mid do(t), X = x]$

Cannot express counterfactuals using do-notation
Roadmap for Computing Counterfactuals
Roadmap for Computing Counterfactuals

Given: Observation of \((T, Y)\) (observation of potential outcome \(Y(t)\) where \(t\) is the observed value of \(T\))
Roadmap for Computing Counterfactuals

Given: Observation of \((T, Y)\) (observation of potential outcome \(Y(t)\) where \(t\) is the observed value of \(T\))

Main ingredient necessary: correct parametric model for the structural equation for \(Y\)
Roadmap for Computing Counterfactuals

Given: Observation of \((T, Y)\) (observation of potential outcome \(Y(t)\) where \(t\) is the observed value of \(T\))

Main ingredient necessary: correct parametric model for the structural equation for \(Y\)

Result: access to counterfactuals \(Y(t')\) at the unit-level
Computing Counterfactuals: Simple Example
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM: \[T := \ldots \]
\[Y := UT + (1 - U)(1 - T) \]
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM: \[T := \ldots \]
\[Y := UT + (1 - U)(1 - T) \]

Observation: T = 0 and Y = 0
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM: \[T := \ldots \]
\[Y := UT + (1 - U)(1 - T) \]

Observation: T = 0 and Y = 0 \((Y_u(0) = 0) \)
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM: \[
T := \ldots \\
Y := UT + (1 - U)(1 - T)
\]

Observation: T = 0 and Y = 0 \((Y_u(0) = 0) \)

\(Y_u(1) \)?
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM: \[T := \ldots \]
\[Y := UT + (1 - U)(1 - T) \]

Observation: T = 0 and Y = 0 \((Y_u(0) = 0)\)
\(Y_u(1)?)\
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM: \[T := \ldots \]
\[
Y := UT + (1 - U)(1 - T)
\]

Observation: \(T = 0 \) and \(Y = 0 \) \((Y_u(0) = 0) \)
\(Y_u(1) ? \)

Step 1: Solve for U
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM: $T := \ldots$

$Y := UT + (1 - U)(1 - T)$

Observation: $T = 0$ and $Y = 0$ \hspace{1cm} (Y_u(0) = 0)

$Y = UT + (1 - U)(1 - T)$

$Y_u(1)$?
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM: \[
T := \ldots \\
Y := UT + (1 - U)(1 - T)
\]

Observation: \(T = 0\) and \(Y = 0\) \(Y_u(0) = 0\)

\[
0 = U(0) + (1 - U)(1 - 0)
\]
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM:
\[
\begin{align*}
T & := \ldots \\
Y & := UT + (1 - U)(1 - T)
\end{align*}
\]

Observation:
\[
\begin{align*}
T &= 0 \text{ and } Y = 0 \\
Y_u(0) &= 0 \\
Y_u(1) &? \\
0 &= U(0) + (1 - U)(1 - 0) \\
0 &= 1 - U
\end{align*}
\]
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM:
\[T := \ldots \]
\[Y := UT + (1 - U)(1 - T) \]

Observation: \(T = 0 \) and \(Y = 0 \)
\[(Y_u(0) = 0) \]
\[Y_u(1)? \]
\[Y = UT + (1 - U)(1 - T) \]
\[0 = U(0) + (1 - U)(1 - 0) \]
\[0 = 1 - U \]
\[U = 1 \]
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM: \(T := \ldots \)
\[Y := UT + (1 - U)(1 - T) \]

Observation: \(T = 0 \) and \(Y = 0 \) \((Y_u(0) = 0) \)
\[Y = UT + (1 - U)(1 - T) \]
\[0 = U(0) + (1 - U)(1 - 0) \]
\[0 = 1 - U \]
\[U = 1 \]
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM:
\[T := \ldots \]
\[Y := UT + (1 - U)(1 - T) \]

Observation: \(T = 0 \) and \(Y = 0 \)
\[(Y_u(0) = 0) \]

Step 2: Individualized SCM
\[T := \ldots \]
\[Y := (1)T + (1 - 1)(1 - T) \]

\[0 = U(0) + (1 - U)(1 - 0) \]
\[0 = 1 - U \]
\[U = 1 \]
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM: \[
T := \ldots \\
Y := UT + (1 - U)(1 - T)
\]

Observation: T = 0 and Y = 0 \((Y_u(0) = 0) \)

\[
Y = UT + (1 - U)(1 - T) \\
Y_u(1)? \\
0 = U(0) + (1 - U)(1 - 0) \\
0 = 1 - U \\
U = 1
\]

Step 2: Individualized SCM
\[
T := \ldots \\
Y := T
\]
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM:
\[T := \ldots \]
\[Y := UT + (1 - U)(1 - T) \]

Observation: \(T = 0 \) and \(Y = 0 \) \((Y_u(0) = 0) \)
\[Y = UT + (1 - U)(1 - T) \]
\[0 = U(0) + (1 - U)(1 - 0) \]
\[0 = 1 - U \]
\[U = 1 \]

Step 2: Individualized SCM
\[T := 1 \]
\[Y := T \]

\(Y_u(1) \)?
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM: \[T := \ldots \]
\[Y := UT + (1 - U)(1 - T) \]

Observation: \[T = 0 \text{ and } Y = 0 \quad (Y_u(0) = 0) \]
\[Y = UT + (1 - U)(1 - T) \]
\[0 = U(0) + (1 - U)(1 - 0) \]
\[0 = 1 - U \]
\[U = 1 \]

Step 2: Individualized SCM
\[T := 1 \]
\[Y := T \]
\[Y_u(1) = 1 \]
Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)
T: get a dog or don’t (1 or 0)
U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM:
\[T := \ldots \]
\[Y := UT + (1 - U)(1 - T) \]

Observation: \(T = 0 \) and \(Y = 0 \)
\[Y_u(0) = 0 \]

Step 2: Individualized SCM
\[T := 1 \]
\[Y := T \]
\[Y_u(1) = 1 \]

ITE: \(Y_u(1) - Y_u(0) = 1 - 0 = 1 \)
General Steps for Deterministic Counterfactuals
General Steps for Deterministic Counterfactuals

From Chapter 4 of Pearl et al. (2016)’s Primer:
General Steps for Deterministic Counterfactuals

From Chapter 4 of Pearl et al. (2016)’s Primer:

1. Abduction: Use an observation to determine the value of U
General Steps for Deterministic Counterfactuals

From Chapter 4 of Pearl et al. (2016)’s *Primer*:

1. Abduction: Use an observation to determine the value of U
2. Action: Modify the SCM, by replacing the structural equation for T with T := t
General Steps for Deterministic Counterfactuals

From Chapter 4 of Pearl et al. (2016)’s Primer:

1. Abduction: Use an observation to determine the value of U
2. Action: Modify the SCM, by replacing the structural equation for T with T := t
3. Prediction: Use the value of U from step 1 and the modified SCM from step 2 to compute the value of Y(t)
Question:
Given the observation $T = 1$ and $Y = 0$, compute $Y(0)$ for this individual given the following SCM:

\[T := \ldots \]
\[Y := UT + (1 - U)(1 - T) \]
Can’t Always Determine Counterfactual

Even when we have the structural equation for \(Y \), we can’t always determine counterfactuals with probability 1.
Can’t Always Determine Counterfactual

Even when we have the structural equation for Y, we can’t always determine counterfactuals with probability 1

What if we can’t solve for U (function that maps U to Y for a fixed value of T isn’t invertible)?
Can’t Always Determine Counterfactual

Even when we have the structural equation for Y, we can’t always determine counterfactuals with probability 1.

What if we can’t solve for U (function that maps U to Y for a fixed value of T isn’t invertible)?

Example:

Structural equation for Y:

$$ Y := \begin{cases}
1 & U = \text{always happy} \\
0 & U = \text{never happy} \\
T & U = \text{dog-needer} \\
1 - T & U = \text{dog-hater}
\end{cases} $$
Can’t Always Determine Counterfactual

Even when we have the structural equation for Y, we can’t always determine counterfactuals with probability 1.

What if we can’t solve for U (function that maps U to Y for a fixed value of T isn’t invertible)?

Example:

Observation: $T = 1$ and $Y = 0$

Structural equation for Y:

$$Y := \begin{cases} 1 & \text{U = always happy} \\ 0 & \text{U = never happy} \\ T & \text{U = dog-needer} \\ 1 - T & \text{U = dog-hater} \end{cases}$$
Can’t Always Determine Counterfactual

Even when we have the structural equation for Y, we can’t always determine counterfactuals with probability 1

What if we can’t solve for U (function that maps U to Y for a fixed value of T isn’t invertible)?

Example:

Observation: T = 1 and Y = 0

Structural equation for Y:

\[
Y := \begin{cases}
1 & U = \text{always happy} \\
0 & U = \text{never happy} \\
T & U = \text{dog-needer} \\
1 - T & U = \text{dog-hater}
\end{cases}
\]
Non-Invertible Example

Structural equation for Y:

$$Y := \begin{cases}
1 & U = \text{always happy} \\
0 & U = \text{never happy} \\
T & U = \text{dog-needer} \\
1 - T & U = \text{dog-hater}
\end{cases}$$

Observation: $T = 1$ and $Y = 0$
Non-Invertible Example

Structural equation for Y:

$$Y := \begin{cases}
1 & U = \text{always happy} \\
0 & U = \text{never happy} \\
T & U = \text{dog-needer} \\
1 - T & U = \text{dog-hater}
\end{cases}$$

Observation: $T = 1$ and $Y = 0$

$(Y_u(1) = 0)$
Non-Invertible Example

Structural equation for Y:

$$Y := \begin{cases}
1 & U = \text{always happy} \\
0 & U = \text{never happy} \\
T & U = \text{dog-needer} \\
1 - T & U = \text{dog-hater}
\end{cases}$$

Observation: $T = 1$ and $Y = 0$

$$(Y_u(1) = 0)$$

$Y_u(0) = ?$$
Non-Invertible Example

Structural equation for Y:

\[
Y := \begin{cases}
1 & U = \text{always happy} \\
0 & U = \text{never happy} \\
T & U = \text{dog-needer} \\
1 - T & U = \text{dog-hater}
\end{cases}
\]

\[
P(U = \text{always happy}) = 0.3 \\
P(U = \text{never happy}) = 0.2 \\
P(U = \text{dog-needer}) = 0.4 \\
P(U = \text{dog-hater}) = 0.1
\]

Observation: \(T = 1 \) and \(Y = 0 \)

\((Y_u(1) = 0) \)

\(Y_u(0) =? \)
Non-Invertible Example

Structural equation for Y:

$$Y := \begin{cases}
1 & U = \text{always happy} \\
0 & U = \text{never happy} \\
T & U = \text{dog-needer} \\
1 - T & U = \text{dog-hater}
\end{cases}$$

Observation: $T = 1$ and $Y = 0$

$Y_u(1) = 0$

$Y_u(0) =$?
Non-Invertible Example

Structural equation for Y:

$$Y := \begin{cases}
1 & U = \text{always happy} \\
0 & U = \text{never happy} \\
T & U = \text{dog-needer} \\
1 - T & U = \text{dog-hater}
\end{cases}$$

Observation: $T = 1$ and $Y = 0$

$$(Y_u(1) = 0)$$

$Y_u(0) =$?

$$P(U = \text{always happy}) = 0.3$$

$$P(U = \text{never happy}) = 0.2$$

$$P(U = \text{dog-needer}) = 0.4$$

$$P(U = \text{dog-hater}) = 0.1$$

$$P(U = \text{never happy} | T = 1, Y = 0) = \frac{0.2}{0.2 + 0.1} = \frac{2}{3}$$

$$P(U = \text{dog-hater} | T = 1, Y = 0) = \frac{0.1}{0.2 + 0.1} = \frac{1}{3}$$
Non-Invertible Example

Structural equation for Y:

$$Y := \begin{cases}
1 & U = \text{always happy} \\
0 & U = \text{never happy} \\
T & U = \text{dog-needer} \\
1 - T & U = \text{dog-hater}
\end{cases}$$

Observation: $T = 1$ and $Y = 0$\hfill
$(Y_u(1) = 0)$

$P(U = \text{always happy}) = 0.3$

$P(U = \text{never happy}) = 0.2$

$P(U = \text{dog-needer}) = 0.4$

$P(U = \text{dog-hater}) = 0.1$

$P(U = \text{never happy} | T = 1, Y = 0) = \frac{0.2}{0.2 + 0.1} = \frac{2}{3}$

$P(U = \text{dog-hater} | T = 1, Y = 0) = \frac{0.1}{0.2 + 0.1} = \frac{1}{3}$

$P(Y_u(0) = 1) = \frac{1}{3}$
General Steps for Probabilistic Counterfactuals
General Steps for Probabilistic Counterfactuals

From Chapter 4 of Pearl et al. (2016)’s Primer:
General Steps for Probabilistic Counterfactuals

From Chapter 4 of Pearl et al. (2016)’s Primer:

1. Abduction: Use an observation \(Z \) to update the distribution of \(U \):
 \[P(U \mid Z) \]
General Steps for Probabilistic Counterfactuals

From Chapter 4 of Pearl et al. (2016)’s Primer:

1. Abduction: Use an observation Z to update the distribution of U: $P(U \mid Z)$

2. Action: Modify the SCM, by replacing the structural equation for T with $T := t$
General Steps for Probabilistic Counterfactuals

From Chapter 4 of Pearl et al. (2016)’s Primer:

1. Abduction: Use an observation \(Z \) to update the distribution of \(U \):
 \[P(U \mid Z) \]

2. Action: Modify the SCM, by replacing the structural equation for \(T \) with \(T := t \)

3. Prediction: Use the updated distribution of \(U \) step 1 and the modified SCM from step 2 to compute the distribution of \(Y(t) \)
No Unit-Level Counterfactuals without Parametric Model

Main ingredient necessary for computing counterfactuals: parametric model for the structural equation for Y
No Unit-Level Counterfactuals without Parametric Model

Main ingredient necessary for computing counterfactuals: parametric model for the structural equation for Y

Strong assumption
No Unit-Level Counterfactuals without Parametric Model

Main ingredient necessary for computing counterfactuals: parametric model for the structural equation for Y

Strong assumption

Without it, we are stuck with the fundamental problem of causal inference.
Question:
Given the observation $T = 1$ and $Y = 1$, compute $Y(0)$ for this individual given the following SCM and prior:

$$Y := \begin{cases}
1 & U = \text{always happy} \\
0 & U = \text{never happy} \\
T & U = \text{dog-needer} \\
1 - T & U = \text{dog-hater}
\end{cases}$$

$P(U = \text{always happy}) = 0.3$
$P(U = \text{never happy}) = 0.2$
$P(U = \text{dog-needer}) = 0.4$
$P(U = \text{dog-hater}) = 0.1$
Population-Level Doesn’t Require a Parametric Model

Population-level counterfactual: $\mathbb{E}[Y(t) \mid T = t']$
Population-Level Doesn’t Require a Parametric Model

Population-level counterfactual: $\mathbb{E}[Y(t) \mid T = t']$

Just like we were able to identify the ATE $\mathbb{E}[Y(1) - Y(0)]$ nonparametrically (using just the causal graph), we can do the same with population-level counterfactual quantities, if they are identifiable.
Population-Level Doesn’t Require a Parametric Model

Population-level counterfactual: \(\mathbb{E}[Y(t) \mid T = t'] \)

Just like we were able to identify the ATE \(\mathbb{E}[Y(1) - Y(0)] \) nonparametrically (using just the causal graph), we can do the same with population-level counterfactual quantities, if they are identifiable

Same with CATEs: \(\mathbb{E}[Y(1) - Y(0) \mid X = x] \)
Population-Level Doesn’t Require a Parametric Model

Population-level counterfactual: $\mathbb{E}[Y(t) \mid T = t']$

Just like we were able to identify the ATE $\mathbb{E}[Y(1) - Y(0)]$ nonparametrically (using just the causal graph), we can do the same with population-level counterfactual quantities, if they are identifiable

Same with CATEs: $\mathbb{E}[Y(1) - Y(0) \mid X = x]$

See Malinsky et al. (2019)’s potential outcome calculus (generalization of do-calculus) for general identification of counterfactual quantities
Counterfactuals Basics

Important Application: Mediation
Mediation

Get dog Happiness

Important Application: Mediation
Mediation

- Get dog
- Walk more
- Happiness

Important Application: Mediation
Mediation

Get dog → Walk more → Happiness

Direct effect
Mediation

Get dog ➔ Walk more ➔ Happiness

Indirect effect

Direct effect
Mediation

Get dog → Walk more → Happiness

Indirect effect

“Direct effect”
Mediation

Get dog → More friends → Happiness

Walk more → Indirect effect

“Direct effect”

Important Application: Mediation
Mediation

"Direct effect"

How can we measure the direct effect?

Get dog

Walk more

More friends

Happiness

Indirect effect
Controlled Direct Effect (CDE)

Important Application: Mediation
Controlled Direct Effect (CDE)

\[
\mathbb{E}[Y \mid do(T = 1), M = m] - \mathbb{E}[Y \mid do(T = 0), M = m]
\]
Controlled Direct Effect (CDE)

\[\mathbb{E}[Y \mid do(T = 1), M = m] - \mathbb{E}[Y \mid do(T = 0), M = m] \]
Controlled Direct Effect (CDE)

$$\mathbb{E}[Y \mid do(T = 1), M = m] - \mathbb{E}[Y \mid do(T = 0), M = m]$$

Important Application: Mediation
Controlled Direct Effect (CDE)

\[\mathbb{E}[Y \mid do(T = 1, M = m)] - \mathbb{E}[Y \mid do(T = 0, M = m)] \]

\[\mathbb{E}[Y \mid do(T = 1), M = m] - \mathbb{E}[Y \mid do(T = 0), M = m] \]

Important Application: Mediation
Controlled Direct Effect (CDE)

\[
\mathbb{E}[Y \mid do(T = 1, M = m)] - \mathbb{E}[Y \mid do(T = 0, M = m)]
\]

\[
\mathbb{E}[Y \mid do(T = 1), M = m] - \mathbb{E}[Y \mid do(T = 0), M = m]
\]

Important Application: Mediation
Controlled Direct Effect (CDE)

\[
\begin{align*}
 \mathbb{E}[Y \mid do(T = 1, M = m)] - \mathbb{E}[Y \mid do(T = 0, M = m)] \\
 \mathbb{E}[Y \mid do(T = 1), M = m] - \mathbb{E}[Y \mid do(T = 0), M = m]
\end{align*}
\]

Problems:

Important Application: Mediation
Controlled Direct Effect (CDE)

![Diagram showing variables T, M, and Y with arrows connecting them.]

Problems:
- CDE is specific to the arbitrary choice of m

\[
\begin{align*}
\mathbb{E}[Y \mid do(T = 1, M = m)] - \mathbb{E}[Y \mid do(T = 0, M = m)] \\
\mathbb{E}[Y \mid do(T = 1), M = m] - \mathbb{E}[Y \mid do(T = 0), M = m]
\end{align*}
\]
Controlled Direct Effect (CDE)

Problems:
- CDE is specific to the arbitrary choice of m
- How do we get the indirect effect? Can’t just subtract the CDE from the total effect

$\mathbb{E}[Y \mid do(T = 1, M = m)] - \mathbb{E}[Y \mid do(T = 0, M = m)]$

$\mathbb{E}[Y \mid do(T = 1), M = m] - \mathbb{E}[Y \mid do(T = 0), M = m]$
Natural Direct and Indirect Effects
Natural Direct and Indirect Effects

Subscript notation:

\[\mathbb{E}[Y_{t,m}] \triangleq \mathbb{E}[Y \mid do(T = t, M = m)] \]
Natural Direct and Indirect Effects

Subscript notation:

\[\mathbb{E}[Y_{t,m}] \triangleq \mathbb{E}[Y \mid do(T = t, M = m)] \quad \mathbb{E}[M_t] \triangleq \mathbb{E}[M \mid do(T = t)] \]
Natural Direct and Indirect Effects

Subscript notation:

\[\mathbb{E}[Y_{t,m}] \triangleq \mathbb{E}[Y \mid \text{do}(T = t, M = m)] \quad \mathbb{E}[M_t] \triangleq \mathbb{E}[M \mid \text{do}(T = t)] \]

\[\text{CDE} \triangleq \mathbb{E}[Y_{1,m} - Y_{0,m}] \]

Important Application: Mediation
Natural Direct and Indirect Effects

Subscript notation:

\[\mathbb{E}[Y_{t,m}] \triangleq \mathbb{E}[Y \mid do(T = t, M = m)] \quad \mathbb{E}[M_t] \triangleq \mathbb{E}[M \mid do(T = t)] \]

\[\text{CDE} \triangleq \mathbb{E}[Y_{1,m} - Y_{0,m}] \]

\[\text{NDE} \triangleq \mathbb{E}[Y_{1,M_0} - Y_{0,M_0}] \]

Important Application: Mediation
Natural Direct and Indirect Effects

Subscript notation:

\[\mathbb{E}[Y_{t,m}] \triangleq \mathbb{E}[Y \mid do(T = t, M = m)] \quad \mathbb{E}[M_t] \triangleq \mathbb{E}[M \mid do(T = t)] \]

\[\text{CDE} \triangleq \mathbb{E}[Y_{1,m} - Y_{0,m}] \]

\[\text{NDE} \triangleq \mathbb{E}[Y_{1,M_0} - Y_{0,M_0}] \]

\[\text{NIE} \triangleq \mathbb{E}[Y_{0,M_1} - Y_{0,M_0}] \]
Natural Direct and Indirect Effects

Subscript notation:

\[\mathbb{E}[Y_{t,m}] \triangleq \mathbb{E}[Y \mid do(T = t, M = m)] \quad \mathbb{E}[M_t] \triangleq \mathbb{E}[M \mid do(T = t)] \]

\[
\text{CDE} \triangleq \mathbb{E}[Y_{1,m} - Y_{0,m}] \\
\text{NDE} \triangleq \mathbb{E}[Y_{1,M_0} - Y_{0,M_0}] \\
\text{NIE} \triangleq \mathbb{E}[Y_{0,M_1} - Y_{0,M_0}]
\]

Recall problems with CDE:

- CDE is specific to the arbitrary choice of \(m \)
- How do we get the indirect effect? Can’t just subtract the CDE from the total effect

Important Application: Mediation
Natural Direct and Indirect Effects

Subscript notation:

\[\mathbb{E}[Y_{t,m}] \triangleq \mathbb{E}[Y \mid do(T = t, M = m)] \quad \mathbb{E}[M_t] \triangleq \mathbb{E}[M \mid do(T = t)] \]

\[
\begin{align*}
\text{CDE} & \triangleq \mathbb{E}[Y_{1,m} - Y_{0,m}] \\
\text{NDE} & \triangleq \mathbb{E}[Y_{1,M_0} - Y_{0,M_0}] \\
\text{NIE} & \triangleq \mathbb{E}[Y_{0,M_1} - Y_{0,M_0}]
\end{align*}
\]

\[\text{TE} = \text{NDE} - \text{NIE}_r \]

Recall problems with CDE:
• CDE is specific to the arbitrary choice of \(m \)
• How do we get the indirect effect? Can’t just subtract the CDE from the total effect
Natural Direct and Indirect Effects

Subscript notation:

\[E[Y_{t,m}] \triangleq E[Y \mid do(T = t, M = m)] \quad E[M_t] \triangleq E[M \mid do(T = t)] \]

\[\text{CDE} \triangleq E[Y_{1,m} - Y_{0,m}] \]

\[\text{NDE} \triangleq E[Y_{1,M_0} - Y_{0,M_0}] \]

\[\text{NIE} \triangleq E[Y_{0,M_1} - Y_{0,M_0}] \]

\[\text{TE} = \text{NDE} - \text{NIE}_r \]

Recall problems with CDE:

- CDE is specific to the arbitrary choice of \(m \)
- How do we get the indirect effect? Can’t just subtract the CDE from the total effect

For example in linear setting, \(\text{TE} = \text{NDE} + \text{NIE} \)

Important Application: Mediation
Question:
Show that \(TE = NDE - NIE_r \),
where \(NIE_r \triangleq \mathbb{E}[Y_{1,M_0} - Y_{1,M_1}] \).
Comparison of Controlled vs. Natural Mediation
Comparison of Controlled vs. Natural Mediation

CDE can always be measured via experiments (do-operator), but it has no clear undirect effect since there is no decomposition.
Comparison of Controlled vs. Natural Mediation

CDE can always be measured via experiments (do-operator), but it has no clear undirect effect since there is no decomposition.

NDE cannot always be measured via experiments since it is counterfactual, but it allows for the complete decomposition of the total effect into the NDE and NIE, which is what we’d like in mediation analysis.
When We Can Measure NDE and NIE

Important Application: Mediation
When We Can Measure NDE and NIE

Adjustment set W
When We Can Measure NDE and NIE

Adjustment set W

Sufficient conditions for identifying NDE:
When We Can Measure NDE and NIE

Adjustment set W

Sufficient conditions for identifying NDE:
1. No member of W is a descendant of T
When We Can Measure NDE and NIE

Adjustment set W

Sufficient conditions for identifying NDE:

1. No member of W is a descendant of T
2. W blocks all backdoor paths from M to Y
When We Can Measure NDE and NIE

Adjustment set W

Sufficient conditions for identifying NDE:
1. No member of W is a descendant of T
2. W blocks all backdoor paths from M to Y

$$NDE = \sum_{m} \sum_{w} (\mathbb{E}[Y \mid do(T = 1, M = m), W = w] - \mathbb{E}[Y \mid do(T = 0, M = m), W = w])$$
$$\times P(M = m \mid do(T = 0), W = w)P(W = w)$$

Important Application: Mediation
When We Can Measure NDE and NIE

Adjustment set W

Sufficient conditions for identifying NDE:
1. No member of W is a descendant of T
2. W blocks all backdoor paths from M to Y
3. $P(M = m \mid do(T = 0), W = w)$ is identifiable (e.g. no unblockable backdoor paths from T to M)
4. $NDE = \sum_m \sum_w (\mathbb{E}[Y \mid do(T = 1, M = m), W = w] - \mathbb{E}[Y \mid do(T = 0, M = m), W = w]) \times P(M = m \mid do(T = 0), W = w) P(W = w)$
When We Can Measure NDE and NIE

Adjustment set W

Sufficient conditions for identifying NDE:
1. No member of W is a descendant of T
2. W blocks all backdoor paths from M to Y
3. $P(M = m \mid do(T = 0), W = w)$ identifiable (e.g. no unblockable backdoor paths from T to M)
4. $\mathbb{E}[Y \mid do(T = t, M = m), W = w]$ identifiable (e.g. no unblockable backdoors paths from T to Y)

$$\text{NDE} = \sum_{m} \sum_{w} (\mathbb{E}[Y \mid do(T = 1, M = m), W = w] - \mathbb{E}[Y \mid do(T = 0, M = m), W = w])$$

$$\times P(M = m \mid do(T = 0), W = w)P(W = w)$$

Important Application: Mediation
When We Can Measure NDE and NIE

Adjustment set W

Sufficient conditions for identifying NDE:
1. No member of W is a descendant of T
2. W blocks all backdoor paths from M to Y
3. $P(M = m \mid do(T = 0), W = w)$ identifiable (e.g. no unblockable backdoor paths from T to M)
4. $E[Y \mid do(T = t, M = m), W = w]$ identifiable (e.g. no unblockable backdoors paths from T to Y)

$$\text{NDE} = \sum_m \sum_w \left(E[Y \mid do(T = 1, M = m), W = w] - E[Y \mid do(T = 0, M = m), W = w] \right) \times P(M = m \mid do(T = 0), W = w)P(W = w)$$

$$= \sum_m \sum_w \left(E[Y \mid T = 1, M = m, W = w] - E[Y \mid T = 0, M = m, W = w] \right) \times P(M = m \mid T = 0, W = w)P(W = w)$$
When We Can Measure NDE and NIE

Adjustment set W

Sufficient conditions for identifying NDE:

1. No member of W is a descendant of T
2. W blocks all backdoor paths from M to Y
3. \(P(M = m \mid do(T = 0), W = w) \) identifiable (e.g. no unblockable backdoor paths from T to M)
4. \(\mathbb{E}[Y \mid do(T = t, M = m), W = w] \) identifiable (e.g. no unblockable backdoors paths from T to Y)

\[
\text{NDE} = \sum_{m} \sum_{w} (\mathbb{E}[Y \mid do(T = 1, M = m), W = w] - \mathbb{E}[Y \mid do(T = 0, M = m), W = w]) \\
\times P(M = m \mid do(T = 0), W = w)P(W = w) \\
= \sum_{m} \sum_{w} (\mathbb{E}[Y \mid T = 1, M = m, W = w] - \mathbb{E}[Y \mid T = 0, M = m, W = w]) \\
\times P(M = m \mid T = 0, W = w)P(W = w)
\]

\(\text{TE} = \text{NDE} - \text{NIE}_r \)

Important Application: Mediation
Question:
Come up with your own example of mediation and the corresponding graph. Then, determine whether you can identify the NDE and NIE from observational data.
Path-Specific Effects

Measure causal effects along arbitrary path or set of paths in the causal graph

See “Identifiability of Path-Specific Effects” (Avin et al., 2005)