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EY(1) | T =1 —-E[Y(0) | T =0] (ignorability)

\ /‘ ElY |T=1—-E[Y | T = 0]
Causal quantities \ /

Statistical quantities (accessible, since we

have P(z,t,y))

A causal quantity (e.g. E[Y (¢)]) is identifiable if we can
compute it from a purely statistical quantity (e.g. E[Y | t])
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(Question:
What important property does an RCT

give usr?
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No overlap means severe positivity violation

P(X | T =0) P(X|T=1)

P(z | )




Another perspective: overlap




Another perspective: overlap




Another perspective: overlap




Another perspective: overlap




Another perspective: overlap

Complete overlap means

no positivity violation




(Question:
What goes wrong if we don’t have
positivity?
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The Positivity-Unconfoundedness Tradeoft

25%0 ovetlap
3-dimensional — 12.5% overlap
2-dimensional 2 ... and so on
(curse of dimensionality)
X1
1-dimensional l N |
50% overlap
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My happiness
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T =1 T'=0
“I get a dog” “I don’t get a dog”
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Consistency: T'=t = Y = Y ()

T =1 T'=0
“I get a dog” “I don’t get a dog”

T
=1) = Y =1 ('m happy)
Consistency assumption

— ,
violated

= 1) = Y =0 (I’'m not happy)

/




Recall:

1. What were the four main assumptions?
2. Why do positivity violations require extrapolation?
3. Can you test if unconfoundedness is satistied?

4. What 1s identifiability?
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Tying it all together

No interference

/ "\
E[Y (1) =Y (0)] =E[Y(1)] — E[Y(0)] (linearity of expectation)
=Ex [E[Y(1) | X] = E[Y(0) | X]]
(law of iterated expectations)
—Ex [E[Y(1) |T =1, X] ~E[Y(0) | T =0, X]
(unconfoundedness and positivity)

=Ex |ElY |T=1, X]-E[Y |T =0, X]] (consistency)



What are potential outcomes?
The fundamental problem of causal inference
Getting around the fundamental problem of causal inference

A complete example with estimation
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Estimands, estimates, and the
Identification-Estimation Flowchart

* Estimand - any quantity we want to estimate
* Causal estimand (e.g. E[Y (1) — Y (0)])
* Statistical estimand (e.g. Ex [E[Y |T =1, X|] - E[Y | T =0, X]])

* Estimate: approximation of some estimand, using data

* Estimation: process for getting from data + estimand to estimate

The Identification-Estimation Flowchart

Identification Estimation
Causal Estimand » Statistical Estimand » Estimate
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Problem: effect of sodium intake on blood pressure

Motivation: 46% of Americans have high blood pressure and high blood
pressure is associated with increased risk of mortality

Data:

* Epidemiological example taken from Luque-Fernandez et al. (2018)

* Outcome Y: (systolic) blood pressure (continuous)

* Treatment T: sodium intake (1 if above 3.5 mg and 0 if below)
* Covariates X: age and amount of protein excreted in urine

* Simulation: so we know the “true” ATE is 1.05


https://academic.oup.com/ije/article/48/2/640/5248195
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True ATE: E[Y (1) — Y (0)] = 1.05
Identification: E[Y (1) =Y (0)]=Ex [E[Y | T =1, X]| -E[Y | T =0, X]]

: : 1
Estimation: — E EY |T=1,z] -E[Y |T =0, x|
n \ ] |\ J
| |

Model (linear regression)

Estimate: 0.85

Naive: E[Y | T =1]—E[Y | T = 0]
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Estimation of ATE

True ATE: E[Y (1) — Y (0)] = 1.05
Identification: E[Y (1) =Y (0)]=Ex [E[Y | T =1, X]| -E[Y | T =0, X]]

: : 1
Estimation: — E EY |T=1,z] -E[Y |T =0, x|
n \ ] |\ J
| |

Model (linear regression)

i 0.85 —1.05
Estimate: 0.85 | | x 100% = 19%
1.05
Naive: E[Y | T =1]—E[Y | T = 0]
i i 5.33 — 1.05
Naive estimate: 5.33 | Wi | x 100% = 407%
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Using coefficient of linear regression

Assume linear parametric form: Y = oT + 38X

Run linear regression: Y = a7 + BX & = 0.85

Continuous treatment: E[Y (¢)] » & =0.85

Severe limitations: the causal effect is the same for all individuals

Yi(1) = Yi(0) = - 1 + B

Y;(t) = at + Px;
Q P —a-0— Pz, =«

See Sections 6.2 and 6.3 of Morgan & Winship (2014) for more complete critique



https://www.cambridge.org/core/books/counterfactuals-and-causal-inference/5CC81E6DF63C5E5A8B88F79D45E1D1B7

