Potential Outcomes

Brady Neal

causalcourse.com

What are potential outcomes?

The fundamental problem of causal inference

Getting around the fundamental problem of causal inference

A complete example with estimation

What are potential outcomes?

The fundamental problem of causal inference

Getting around the fundamental problem of causal inference

A complete example with estimation

Inferring the effect of treatment/policy on some outcome

Inferring the effect of treatment/policy on some outcome

Inferring the effect of treatment/policy on some outcome

Inferring the effect of treatment/policy on some outcome

Take pill

causal effect

Inferring the effect of treatment/policy on some outcome

causal effect?

Inferring the effect of treatment/policy on some outcome

no causal effect

T: observed treatment Y: observed outcome

T: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

T: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

T: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

T: observed treatment

: observed outcome

i: used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

T: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

T: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

$$do(T=0) \qquad Y_i|_{do(T=0)} \triangleq Y_i(0)$$

T: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Causal effect

$$Y_i(1) - Y_i(0)$$

T: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Causal effect

$$Y_i(1) - Y_i(0)$$

T: observed treatment

Y: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Causal effect

$$Y_i(1) - Y_i(0)$$

T: observed treatment

Y: observed outcome

i: used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Causal effect

$$Y_i(1) - Y_i(0) = 1$$

What are potential outcomes?

The fundamental problem of causal inference

Getting around the fundamental problem of causal inference

A complete example with estimation

Fundamental problem of causal inference

T: observed treatment

Y: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Causal effect

$$Y_i(1) - Y_i(0) = 1$$

Fundamental problem of causal inference

Counterfactual

T: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Factual

Causal effect

$$Y_i(1) - Y_i(0) = 1$$

Fundamental problem of causal inference

T: observed treatment

Y: observed outcome

i: used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Counterfactual

Causal effect

$$Y_i(1) - Y_i(0) = 1$$

Missing data interpretation

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0	?	0	?
2	1	1	1	?	?
3	1	0	0	?	?
4	0	0	?	0	?
5	0	1	?	1	?
6	1	1	1	?	?

T: observed treatment

Y: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Question: What is the fundamental problem of

causal inference?

What are potential outcomes?

The fundamental problem of causal inference

Getting around the fundamental problem of causal inference

A complete example with estimation

Brady Neal 10 / 41

$$Y_i(1) - Y_i(0)$$

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0	?	0	?
2	1	1	1	?	?
3	1	0	0	?	?
4	0	0	?	0	?
5	0	1	?	1	?
6	1	1	1	?	?

: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

$$\mathbb{E}[Y_i(1) - Y_i(0)]$$

i	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
$\overline{1}$	0	0	?	0	?
2	1	1	1	?	?
3	1	0	0	?	?
4	0	0	?	0	?
5	0	1	?	1	?
6	1	1	1	?	?

: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Brady Neal 11 / 41

$$\mathbb{E}[Y(1) - Y(0)]$$

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
$\overline{1}$	0	0	?	0	?
2	1	1	1	?	?
3	1	0	0	?	?
4	0	0	?	0	?
5	0	1	?	1	?
6	1	1	1	?	?

: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$$

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0	?	0	?
2	1	1	1	?	?
3	1	0	0	?	?
4	0	0	?	0	?
5	0	1	?	1	?
6	1	1	1	?	?

: observed treatment

Y: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0	?	0	?
2	1	1	1	?	?
3	1	0	0	?	?
4	0	0	?	0	?
5	0	1	?	1	?
6	1	1	1	?	?

: observed treatment

Y: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?

: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Brady Neal 11 / 41

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?

: observed treatment

Y: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

2/3

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?

: observed treatment

Y: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

 $\frac{2}{3}$ $\frac{1}{3}$

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?

: observed treatment

: observed outcome

i: used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

 $\frac{2}{3} - \frac{1}{3} = \frac{1}{3}$

Average treatment effect (ATE)

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?

: observed treatment

Y: observed outcome

i: used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

2/3 - 1/3 = 1/3

Average treatment effect (ATE)

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \geqslant \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?

T: observed treatment

Y: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

2/3 - 1/3 = 1/3

11 / 41

Average treatment effect (ATE)

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \nearrow \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?

associational difference

T: observed treatment

Y: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Sleeping with shoes on is strongly correlated with waking up with a headache

Sleeping with shoes on is strongly correlated with waking up with a headache

Sleeping with shoes on is strongly correlated with waking up with a headache

Common cause: drinking the night before

1. Confounding

Sleeping with shoes on is strongly correlated with waking up with a headache

Sleeping with shoes on is strongly correlated with waking up with a headache

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \nearrow \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

Went to sleep with shoes on

Went to sleep without shoes on

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \triangleright \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

Went to sleep with shoes on

Went to sleep without shoes on

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \geqslant \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

Went to sleep without shoes on

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \triangleright \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

Went to sleep with shoes on

Went to sleep without shoes on

What would comparable groups look like?

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \geqslant \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

Went to sleep without shoes on

What would comparable groups look like?

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \triangleright \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

Went to sleep without shoes on

What would comparable groups look like?

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

Went to sleep without shoes on

Question:

Why is association not causation?

What assumptions would make the ATE equal to the associational difference?

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y(1) \mid T = 1] - \mathbb{E}[Y(0) \mid T = 0] \quad \text{(ignorability)}$$

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y(1) \mid T = 1] - \mathbb{E}[Y(0) \mid T = 0] \quad \text{(ignorability)}$$
$$= \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y(1) \mid T = 1] - \mathbb{E}[Y(0) \mid T = 0] \quad \text{(ignorability)}$$
$$= \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	\overline{Y}	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0	?	0	?
2	1	1	1	?	?
3	1	0	0	?	?
4	0	0	?	0	?
5	0	1	?	1	?
6	1	1	1	?	?

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y(1) \mid T = 1] - \mathbb{E}[Y(0) \mid T = 0] \quad \text{(ignorability)}$$
$$= \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y(1) \mid T = 1] - \mathbb{E}[Y(0) \mid T = 0] \quad \text{(ignorability)}$$
$$= \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	\overline{Y}	Y(1)	Y(0)	Y(1) - Y(0)
$\frac{\overline{1}}{1}$	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?
			$^{2}/_{3}$		

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y(1) \mid T = 1] - \mathbb{E}[Y(0) \mid T = 0] \quad \text{(ignorability)}$$
$$= \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	\overline{Y}	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?
			$^{2}/_{3}$	$1/_{3}$	

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y(1) \mid T = 1] - \mathbb{E}[Y(0) \mid T = 0] \quad \text{(ignorability)}$$
$$= \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	\overline{Y}	Y(1)	Y(0)	Y(1) - Y(0)
$\frac{1}{1}$	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?
			2/3 -	-1/3 :	= 1/3

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y(1) \mid T = 1] - \mathbb{E}[Y(0) \mid T = 0] \quad \text{(ignorability)}$$
$$= \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?

2/3 - 1/3 = 1/3

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y(1) \mid T = 1] - \mathbb{E}[Y(0) \mid T = 0] \quad \text{(ignorability)}$$
$$= \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?
			$\frac{2}{3}$ -	-1/3	= 1/3

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y(1) \mid T = 1] - \mathbb{E}[Y(0) \mid T = 0] \quad \text{(ignorability)}$$
$$= \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?
			$^{2/_{3}}$ -	-1/3	= 1/3

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y(1) \mid T = 1] - \mathbb{E}[Y(0) \mid T = 0] \quad \text{(ignorability)}$$
$$= \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

\overline{i}	T	Y	Y(1)	Y(0)	Y(1) - Y(0)
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?
			2/3 -	-1/3	= 1/3

Before switch After switch
$$\mathbb{E}[Y(1) \mid T=1] = \mathbb{E}[Y(1) \mid T=0]$$

Before switch After switch $\mathbb{E}[Y(1) \mid T=1] = \mathbb{E}[Y(1) \mid T=0] = \mathbb{E}[Y(1)]$

Before switch After switch $\mathbb{E}[Y(1) \mid T = 1] = \mathbb{E}[Y(1) \mid T = 0] = \mathbb{E}[Y(1)]$ $\mathbb{E}[Y(0) \mid T = 0] = \mathbb{E}[Y(0) \mid T = 1] = \mathbb{E}[Y(0)]$

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y(1) \mid T = 1] - \mathbb{E}[Y(0) \mid T = 0] \quad \text{(ignorability)}$$
$$= \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y(1) \mid T = 1] - \mathbb{E}[Y(0) \mid T = 0] \quad \text{(ignorability)}$$

$$= \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$
 Causal quantities

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y(1) \mid T = 1] - \mathbb{E}[Y(0) \mid T = 0] \quad \text{(ignorability)}$$

$$= \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$
Causal quantities
$$\text{Statistical quantities} \quad \text{(accessible, since we have } P(x, t, y))$$

$$\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \mathbb{E}[Y(1) \mid T = 1] - \mathbb{E}[Y(0) \mid T = 0] \quad \text{(ignorability)}$$

$$= \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$
Causal quantities
$$\text{Statistical quantities} \quad \text{(accessible, since we have } P(x, t, y))$$

A causal quantity (e.g. $\mathbb{E}[Y(t)]$) is **identifiable** if we can compute it from a purely statistical quantity (e.g. $\mathbb{E}[Y \mid t]$)

Went to sleep with shoes on

Went to sleep without shoes on

Went to sleep without shoes on

Question: What important property does an RCT give us?

Exchangeability:

$$(Y(1), Y(0)) \perp \!\!\! \perp T$$

Exchangeability:

$$(Y(1), Y(0)) \perp \!\!\! \perp T$$

Exchangeability:

$$(Y(1),Y(0)) \perp \!\!\! \perp T$$

Exchangeability:

$$(Y(1), Y(0)) \perp \!\!\! \perp T$$

Conditional exchangeability:

$$(Y(1),Y(0)) \perp \!\!\! \perp T \mid X$$

Exchangeability:

$$(Y(1),Y(0)) \perp \!\!\! \perp T$$

Conditional exchangeability:

$$(Y(1),Y(0)) \perp \!\!\! \perp T \mid X$$

Conditional exchangeability: $(Y(1), Y(0)) \perp \!\!\! \perp T \mid X$

Conditional exchangeability: $(Y(1), Y(0)) \perp \!\!\! \perp T \mid X$

$$\mathbb{E}[Y(1) - Y(0) \mid X] = \mathbb{E}[Y(1) \mid X] - \mathbb{E}[Y(0) \mid X]$$

Conditional exchangeability: $(Y(1), Y(0)) \perp \!\!\! \perp T \mid X$

$$\mathbb{E}[Y(1) - Y(0) \mid X] = \mathbb{E}[Y(1) \mid X] - \mathbb{E}[Y(0) \mid X]$$
$$= \mathbb{E}[Y(1) \mid T = 1, X] - \mathbb{E}[Y(0) \mid T = 0, X]$$

Conditional exchangeability: $(Y(1), Y(0)) \perp \!\!\! \perp T \mid X$

$$\mathbb{E}[Y(1) - Y(0) \mid X] = \mathbb{E}[Y(1) \mid X] - \mathbb{E}[Y(0) \mid X]$$

$$= \mathbb{E}[Y(1) \mid T = 1, X] - \mathbb{E}[Y(0) \mid T = 0, X]$$

$$= \mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]$$

Conditional exchangeability: $(Y(1), Y(0)) \perp \!\!\! \perp T \mid X$

$$\mathbb{E}[Y(1) - Y(0) \mid X] = \mathbb{E}[Y(1) \mid X] - \mathbb{E}[Y(0) \mid X]$$

$$= \mathbb{E}[Y(1) \mid T = 1, X] - \mathbb{E}[Y(0) \mid T = 0, X]$$

$$= \mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]$$

What about the ATE? $\mathbb{E}[Y(1) - Y(0)]$

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X \mathbb{E}[Y(1) - Y(0) \mid X]$$
$$= \mathbb{E}_X \left[\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X] \right]$$

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X \mathbb{E}[Y(1) - Y(0) \mid X]$$
$$= \mathbb{E}_X \left[\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X] \right]$$

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X \mathbb{E}[Y(1) - Y(0) \mid X]$$
$$= \mathbb{E}_X \left[\mathbb{E}[Y \mid T = 1, \underline{X}] - \mathbb{E}[Y \mid T = 0, \underline{X}] \right]$$

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X \mathbb{E}[Y(1) - Y(0) \mid X]$$
$$= \mathbb{E}_X \left[\mathbb{E}[Y \mid T = 1, \underline{X}] - \mathbb{E}[Y \mid T = 0, \underline{X}] \right]$$

unconfoundedness = conditional ignorability = conditional exchangeability

unconfoundedness = conditional ignorability = conditional exchangeability

Conditional exchangeability: $(Y(1), Y(0)) \perp \!\!\! \perp T \mid X$

unconfoundedness = conditional ignorability = conditional exchangeability

Conditional exchangeability: $(Y(1), Y(0)) \perp \!\!\! \perp T \mid X$

unconfoundedness = conditional ignorability = conditional exchangeability

Conditional exchangeability: $(Y(1), Y(0)) \square T \mid X$

For all values of covariates x present in the population of interest (i.e. x such that P(X = x) > 0),

$$0 < P(T = 1 \mid X = x) < 1$$

For all values of covariates x present in the population of interest (i.e. x such that P(X=x)>0),

$$0 < P(T = 1 \mid X = x) < 1$$

Why? Recall the adjustment formula:

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X \left[\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X] \right]$$

For all values of covariates x present in the population of interest (i.e. x such that P(X = x) > 0),

$$0 < P(T = 1 \mid X = x) < 1$$

Why? Recall the adjustment formula:

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X \left[\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X] \right]$$

$$\sum_{x} \left(\sum_{y} y P(Y = y \mid T = 1, X = x) - \sum_{y} y P(Y = y \mid T = 0, X = x) \right)$$

For all values of covariates x present in the population of interest (i.e. x such that P(X = x) > 0),

$$0 < P(T = 1 \mid X = x) < 1$$

Why? Recall the adjustment formula:

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$$

$$\sum_{x} \left(\sum_{y} y P(Y = y \mid T = 1, X = x) - \sum_{y} y P(Y = y \mid T = 0, X = x) \right)$$

$$\sum_{x} \left(\sum_{y} y \frac{P(Y=y, T=1, X=x)}{P(T=1 \mid X=x)P(X=x)} - \sum_{y} y \frac{P(Y=y, T=0, X=x)}{P(T=0 \mid X=x)P(X=x)} \right)$$

Positivity

For all values of covariates x present in the population of interest (i.e. x such that P(X = x) > 0),

$$0 < P(T = 1 \mid X = x) < 1$$

Why? Recall the adjustment formula:

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X \left[\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X] \right]$$

$$\sum_{x} \left(\sum_{y} y P(Y = y \mid T = 1, X = x) - \sum_{y} y P(Y = y \mid T = 0, X = x) \right)$$

$$\sum_{x} \left(\sum_{y} y \frac{P(Y=y, T=1, X=x)}{P(T=1 \mid X=x)P(X=x)} - \sum_{y} y \frac{P(Y=y, T=0, X=x)}{P(T=0 \mid X=x)P(X=x)} \right)$$

Positivity

For all values of covariates x present in the population of interest (i.e. x such that P(X = x) > 0),

$$0 < P(T = 1 \mid X = x) < 1$$

Why? Recall the adjustment formula:

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X \left[\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X] \right]$$

$$\sum_{x} \left(\sum_{y} y P(Y = y \mid T = 1, X = x) - \sum_{y} y P(Y = y \mid T = 0, X = x) \right)$$

$$\sum_{x} \left(\sum_{y} y \frac{P(Y=y, T=1, X=x)}{P(T=1 \mid X=x)P(X=x)} - \sum_{y} y \frac{P(Y=y, T=0, X=x)}{P(T=0 \mid X=x)P(X=x)} \right)$$

Total population

Total population

Total population

No one treated

Total population

$$X = x$$

$$T = 1$$

Everyone treated

Overlap between $P(X \mid T = 0)$ and $P(X \mid T = 1)$

Question:
What goes wrong if we don't have positivity?

x

Adjustment formula:
$$\sum_{x} (\mathbb{E}[Y \mid T = 1, x] - \mathbb{E}[Y \mid T = 0, x])$$

Model

Adjustment formula:
$$\sum_{x} (\mathbb{E}[Y \mid T=1, x] - \mathbb{E}[Y \mid T=0, x])$$
 with
$$f_1(x)$$

Adjustment formula:
$$\sum_{x} (\mathbb{E}[Y \mid T=1, x] - \mathbb{E}[Y \mid T=0, x])$$
 with with
$$f_1(x)$$

Adjustment formula:
$$\sum_{x} (\mathbb{E}[Y \mid T=1, x] - \mathbb{E}[Y \mid T=0, x])$$
 with with
$$f_1(x)$$

Adjustment formula:
$$\sum_{x} (\mathbb{E}[Y \mid T=1, x] - \mathbb{E}[Y \mid T=0, x])$$
 with with
$$f_1(x)$$

Adjustment formula:

Model Model
$$\sum_{x} (\mathbb{E}[Y \mid T = 1, x] - \mathbb{E}[Y \mid T = 0, x])$$
 with with $f_1(x)$ $f_0(x)$

Adjustment formula:

Adjustment formula:

Model Model
$$\sum_{x} (\mathbb{E}[Y \mid T = 1, x] - \mathbb{E}[Y \mid T = 0, x])$$
 with with $f_1(x)$ $f_0(x)$

Adjustment formula:

Model Model
$$\sum_{x} (\mathbb{E}[Y \mid T = 1, x] - \mathbb{E}[Y \mid T = 0, x])$$
 with with $f_1(x)$ $f_0(x)$

Adjustment formula:
$$\sum_{x} (\mathbb{E}[Y \mid T=1, x] - \mathbb{E}[Y \mid T=0, x])$$
 with with
$$f_1(x)$$

No interference

$$Y_i(t_1, \ldots, t_{i-1}, t_i, t_{i+1}, \ldots, t_n) = Y_i(t_i)$$

No interference

$$Y_i(t_1,\ldots,t_{i-1},t_i,t_{i+1},\ldots,t_n) = Y_i(t_i)$$

No interference

$$Y_i(t_1,\ldots,t_{i-1},t_i,t_{i+1},\ldots,t_n) = Y_i(t_i)$$

No interference

$$Y_i(t_1,\ldots,t_{i-1},t_i,t_{i+1},\ldots,t_n) = Y_i(t_i)$$

No interference

$$Y_i(t_1,\ldots,t_{i-1},t_i,t_{i+1},\ldots,t_n) = Y_i(t_i)$$

Consistency:
$$T = t \implies Y = Y(t)$$

Consistency:
$$T = t \implies Y = Y(t)$$

$$T = 1$$
 "I get a dog"

Consistency:
$$T = t \implies Y = Y(t)$$

$$T=1$$
 $T=0$ "I don't get a dog"

Consistency:
$$T = t \implies Y = Y(t)$$

$$T=1$$
 $T=0$ "I get a dog" "I don't get a dog"

$$(T=1) \implies Y=1$$
 (I'm happy)

34 / 41

Consistency:
$$T = t \implies Y = Y(t)$$

$$T=1$$
 $T=0$ "I get a dog" "I don't get a dog"

$$T = 0$$
 "I don't get a dog"

$$(T=1) \implies Y=1$$
 (I'm happy)

$$T = 1 \implies Y = 0 \text{ (I'm not happy)}$$

Consistency:
$$T = t \implies Y = Y(t)$$

$$T = 1$$
 "I get a dog"

$$T=1$$
 $T=0$ "I get a dog" "I don't get a dog"

$$(T=1) \implies Y=1$$
 (I'm happy)

$$T = 1) \implies Y = 0 \text{ (I'm not happy)}$$

Consistency assumption violated

Recall:

- 1. What were the four main assumptions?
- 2. Why do positivity violations require extrapolation?
- 3. Can you test if unconfoundedness is satisfied?
- 4. What is identifiability?

$$\mathbb{E}[Y(1) - Y(0)]$$

No interference

$$\mathbb{E}[Y(1) - Y(0)]$$

No interference

(linearity of expectation)

No interference

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \qquad \text{(linearity of expectation)}$$

$$= \mathbb{E}_X \left[\mathbb{E}[Y(1) \mid X] - \mathbb{E}[Y(0) \mid X] \right] \qquad \text{(law of iterated expectations)}$$

No interference

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \qquad \text{(linearity of expectation)}$$

$$= \mathbb{E}_X \left[\mathbb{E}[Y(1) \mid X] - \mathbb{E}[Y(0) \mid X] \right] \qquad \text{(law of iterated expectations)}$$

$$= \mathbb{E}_X \left[\mathbb{E}[Y(1) \mid T = 1, X] - \mathbb{E}[Y(0) \mid T = 0, X] \right] \qquad \text{(unconfoundedness and positivity)}$$

No interference

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] \qquad \text{(linearity of expectation)}$$

$$= \mathbb{E}_X \left[\mathbb{E}[Y(1) \mid X] - \mathbb{E}[Y(0) \mid X] \right] \qquad \text{(law of iterated expectations)}$$

$$= \mathbb{E}_X \left[\mathbb{E}[Y(1) \mid T = 1, X] - \mathbb{E}[Y(0) \mid T = 0, X] \right] \qquad \text{(unconfoundedness and positivity)}$$

$$= \mathbb{E}_X \left[\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X] \right] \qquad \text{(consistency)}$$

What are potential outcomes?

The fundamental problem of causal inference

Getting around the fundamental problem of causal inference

A complete example with estimation

• Estimand - any quantity we want to estimate

- Estimand any quantity we want to estimate
 - Causal estimand (e.g. $\mathbb{E}[Y(1) Y(0)]$)

- Estimand any quantity we want to estimate
 - Causal estimand (e.g. $\mathbb{E}[Y(1) Y(0)]$)
 - Statistical estimand (e.g. $\mathbb{E}_X [\mathbb{E}[Y \mid T=1, X] \mathbb{E}[Y \mid T=0, X]])$

- Estimand any quantity we want to estimate
 - Causal estimand (e.g. $\mathbb{E}[Y(1) Y(0)]$)
 - Statistical estimand (e.g. $\mathbb{E}_X \left[\mathbb{E}[Y \mid T=1, X] \mathbb{E}[Y \mid T=0, X] \right] \right)$
- Estimate: approximation of some estimand, using data

- Estimand any quantity we want to estimate
 - Causal estimand (e.g. $\mathbb{E}[Y(1) Y(0)]$)
 - Statistical estimand (e.g. $\mathbb{E}_X [\mathbb{E}[Y \mid T=1, X] \mathbb{E}[Y \mid T=0, X]])$
- Estimate: approximation of some estimand, using data
- Estimation: process for getting from data + estimand to estimate

- Estimand any quantity we want to estimate
 - Causal estimand (e.g. $\mathbb{E}[Y(1) Y(0)]$)
 - Statistical estimand (e.g. $\mathbb{E}_X [\mathbb{E}[Y \mid T=1, X] \mathbb{E}[Y \mid T=0, X]])$
- Estimate: approximation of some estimand, using data
- Estimation: process for getting from data + estimand to estimate

The Identification-Estimation Flowchart

Motivation: 46% of Americans have high blood pressure and high blood pressure is associated with increased risk of mortality

Motivation: 46% of Americans have high blood pressure and high blood pressure is associated with increased risk of mortality

Data:

• Epidemiological example taken from <u>Luque-Fernandez et al. (2018)</u>

Motivation: 46% of Americans have high blood pressure and high blood pressure is associated with increased risk of mortality

Data:

- Epidemiological example taken from <u>Luque-Fernandez et al. (2018)</u>
- Outcome Y: (systolic) blood pressure (continuous)

Motivation: 46% of Americans have high blood pressure and high blood pressure is associated with increased risk of mortality

Data:

- Epidemiological example taken from <u>Luque-Fernandez et al. (2018)</u>
- Outcome Y: (systolic) blood pressure (continuous)
- Treatment T: sodium intake (1 if above 3.5 mg and 0 if below)

Motivation: 46% of Americans have high blood pressure and high blood pressure is associated with increased risk of mortality

Data:

- Epidemiological example taken from <u>Luque-Fernandez et al. (2018)</u>
- Outcome Y: (systolic) blood pressure (continuous)
- Treatment T: sodium intake (1 if above 3.5 mg and 0 if below)
- Covariates X: age and amount of protein excreted in urine

Motivation: 46% of Americans have high blood pressure and high blood pressure is associated with increased risk of mortality

Data:

- Epidemiological example taken from <u>Luque-Fernandez et al. (2018)</u>
- Outcome Y: (systolic) blood pressure (continuous)
- Treatment T: sodium intake (1 if above 3.5 mg and 0 if below)
- Covariates X: age and amount of protein excreted in urine
- Simulation: so we know the "true" ATE is 1.05

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation:

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation: $\frac{1}{n} \sum_{x} [\mathbb{E}[Y \mid T = 1, x] - \mathbb{E}[Y \mid T = 0, x]]$

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation:
$$\frac{1}{n} \sum_{x} \left[\mathbb{E}[Y \mid T = 1, x] - \mathbb{E}[Y \mid T = 0, x] \right]$$
Model (linear regression)

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation:
$$\frac{1}{n} \sum_{x} \left[\mathbb{E}[Y \mid T=1, x] - \mathbb{E}[Y \mid T=0, x] \right]$$
Model (linear regression)

Estimate: 0.85

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation:
$$\frac{1}{n} \sum_{x} \left[\mathbb{E}[Y \mid T = 1, x] - \mathbb{E}[Y \mid T = 0, x] \right]$$
Model (linear regression)

Estimate: 0.85

Naive: $\mathbb{E}[Y \mid T=1] - \mathbb{E}[Y \mid T=0]$

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation:
$$\frac{1}{n} \sum_{x} \left[\mathbb{E}[Y \mid T=1, x] - \mathbb{E}[Y \mid T=0, x] \right]$$
Model (linear regression)

Estimate: 0.85

Naive: $\mathbb{E}[Y \mid T=1] - \mathbb{E}[Y \mid T=0]$

Naive estimate: 5.33

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation:
$$\frac{1}{n} \sum_{x} \left[\mathbb{E}[Y \mid T = 1, x] - \mathbb{E}[Y \mid T = 0, x] \right]$$
Model (linear regression)

Estimate: 0.85

Naive: $\mathbb{E}[Y \mid T=1] - \mathbb{E}[Y \mid T=0]$

Naive estimate: 5.33

$$\frac{|5.33 - 1.05|}{1.05} \times 100\% = 407\%$$

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation: $\frac{1}{n} \sum_{x} \left[\mathbb{E}[Y \mid T = 1, x] - \mathbb{E}[Y \mid T = 0, x] \right]$ Model (linear regression)

Estimate: 0.85

$$\frac{|0.85 - 1.05|}{1.05} \times 100\% = 19\%$$

Naive: $\mathbb{E}[Y \mid T=1] - \mathbb{E}[Y \mid T=0]$

Naive estimate: 5.33

$$\frac{|5.33 - 1.05|}{1.05} \times 100\% = 407\%$$

Assume linear parametric form: $Y = \alpha T + \beta X$

Assume linear parametric form: $Y = \alpha T + \beta X$

Run linear regression: $Y = \hat{\alpha}T + \hat{\beta}X$

Assume linear parametric form: $Y = \alpha T + \beta X$

Run linear regression: $Y = \hat{\alpha}T + \hat{\beta}X$ $\hat{\alpha} = 0.85$

Assume linear parametric form: $Y = \alpha T + \beta X$

Run linear regression: $Y = \hat{\alpha}T + \hat{\beta}X$ $\hat{\alpha} = 0.85$

Continuous treatment: $\mathbb{E}[Y(1) - Y(0)]$

Assume linear parametric form: $Y = \alpha T + \beta X$

Run linear regression: $Y = \hat{\alpha}T + \hat{\beta}X$ $\hat{\alpha} = 0.85$

Continuous treatment: $\mathbb{E}[Y(t)]$

Assume linear parametric form: $Y = \alpha T + \beta X$

Run linear regression: $Y = \hat{\alpha}T + \hat{\beta}X$ $\hat{\alpha} = 0.85$

Continuous treatment: $\mathbb{E}[Y(t)]$ \longrightarrow $\hat{\alpha} = 0.85$

Assume linear parametric form: $Y = \alpha T + \beta X$

Continuous treatment: $\mathbb{E}[Y(t)]$ \longrightarrow $\hat{\alpha} = 0.85$

Severe limitations:

Assume linear parametric form: $Y = \alpha T + \beta X$

Run linear regression: $Y = \hat{\alpha}T + \hat{\beta}X$ $\hat{\alpha} = 0.85$

Continuous treatment: $\mathbb{E}[Y(t)]$ $\hat{\alpha} = 0.85$

Severe limitations: the causal effect is the same for all individuals

Assume linear parametric form: $Y = \alpha T + \beta X$

Run linear regression: $Y = \hat{\alpha}T + \hat{\beta}X$ $\hat{\alpha} = 0.85$

Continuous treatment: $\mathbb{E}[Y(t)]$ $\hat{\alpha} = 0.85$

Severe limitations: the causal effect is the same for all individuals

$$Y_i(t) = \alpha t + \beta x_i$$

Assume linear parametric form: $Y = \alpha T + \beta X$

Run linear regression: $Y = \hat{\alpha}T + \hat{\beta}X$ $\hat{\alpha} = 0.85$

Continuous treatment: $\mathbb{E}[Y(t)]$ \longrightarrow $\hat{\alpha} = 0.85$

Severe limitations: the causal effect is the same for all individuals

$$Y_i(t) = \alpha t + \beta x_i$$

$$Y_i(1) - Y_i(0) = \alpha \cdot 1 + \beta x_i$$

$$-\alpha \cdot 0 - \beta x_i$$

Assume linear parametric form: $Y = \alpha T + \beta X$

Run linear regression: $Y = \hat{\alpha}T + \hat{\beta}X$ $\hat{\alpha} = 0.85$

Continuous treatment: $\mathbb{E}[Y(t)]$ \longrightarrow $\hat{\alpha} = 0.85$

Severe limitations: the causal effect is the same for all individuals

$$Y_i(t) = \alpha t + \beta x_i$$

$$Y_i(1) - Y_i(0) = \alpha \cdot 1 + \beta x_i$$

$$-\alpha \cdot 0 - \beta x_i = \alpha$$

Assume linear parametric form: $Y = \alpha T + \beta X$

Run linear regression: $Y = \hat{\alpha}T + \hat{\beta}X$ $\hat{\alpha} = 0.85$

Continuous treatment: $\mathbb{E}[Y(t)]$ \longrightarrow $\hat{\alpha} = 0.85$

Severe limitations: the causal effect is the same for all individuals

$$Y_i(t) = \alpha t + \beta x_i$$

$$Y_i(1) - Y_i(0) = \alpha \cdot 1 + \beta x_i$$

$$-\alpha \cdot 0 - \beta x_i = \alpha$$

See Sections 6.2 and 6.3 of Morgan & Winship (2014) for more complete critique