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local Markov assumption <= Bayesian network factorization

See Chapter 3 of Koller & Friedman (2009) book for proofs


https://mitpress.mit.edu/books/probabilistic-graphical-models
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Recall:

1. How 1s the local Markov assumption related to the
Bayesian network factorization?

2. What are the two parts of the minimality
assumption? What do we gain with the second part?



What 1s a causer

A variable X i1s said to be a cause of a variable Y if
Y can change in response to changes in X.




Causal edges assumption

In a directed graph, every parent is a direct cause
ot all its children.
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Two assumptions to give us tlow of

DAG  + association and causation in graphs:
1. Markov Assumption

2. Causal Edges Assumption
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(Question:
What assumption tells us that X, and X,
are associated, given the following graph?
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(Question:
In the three different kinds of three-node
oraphs, what can block a path?
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Blocked path definition

A path between nodes X and Y is blocked by a (potentially empty)
conditioning set Z if either of the following is true:

1. Along the path, thereisa chain --- =W — ... orafork --- W — ...
where W is conditioned on (W € Z).

2. There is a collider W on the path that 1s not conditioned on (W ¢ 7)
and none of its descendants are conditioned on (de(W) € 7).

Unblocked path: a path that is not blocked
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