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Modularity assumption

If we intervene on a node X,, then only the mechanism P(x; | pa;)
changes. All other mechanisms P(z; | pa,;) where i # j remain unchanged.

In other words, the causal mechanisms are modular.

Many names: independent mechanisms, autonomy, invariance, etc.
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Modularity assumption: more formal

If we intervene on a set of nodes S C [n], setting them to constants, then
for all 1, we have the following:

1. It i ¢S, then P(z; | pa;) remains unchanged.

2. It i € S, then P(x; | pa;) = 1 if|z; i1s the value that X; was set tojby the
intervention; otherwise, P(z; | pa;) = 0. I
consistent with
the intervention
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What would it mean 1f modularity 1s violated?

Intervention on T not
only changes P(T' | pa(T))

but also changes other
mechanisms such as P(7» | pa(1»))
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Truncated factorization:

P(xy,...,z, | do(S HP z; | pa;)
1S

if x 1s consistent with the intervention.

Otherwise,
P(zy,...,2y | do(S=s)) =0
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Simple identification via truncated factorization

Goal: identity P(y | do(t))

T

Bayesian network factorization: P(y,t,z) = P(z)P(t|z)P(y | t,z)
Truncated factorization: P(y,x | do(t)) = P(z) P(y | t,x)

Marginalize: P(y | do(t)) =) P(y | t,z) P(x)

x
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Backdoor criterion and backdoor adjustment

A set of variables W satisfies the backdoor criterion relative to T and Y
it the following are true:

1. Wlocks all backdoor paths from %o Y

2. Woes not contain any descendants of T

Given the modularity assumption and that W satisfies the backdoor
criterion, we can identity the causal effect of T on Y

P(y | do(t) ZPy\tw (w)
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G

1. Wlocks all backdoor paths from %o Y

2. Wdoes not contain any descendants of T

Y g T|W
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(Question:
How does this backdoor adjustment relate
to the adjustment formula we saw in the
potential outcomes lecture?

Section 4.4.1 of the ICT book

Backdoor adjustment

(y | do(t) ZP | ¢, w) P(w)

Adjustment formula from before:
E[Y(1) - Y(0)] = Ew [E[Y | T =1, W] —E[Y | T =0, W]
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Causal mechanisms and direct causes revisited

P(z; | pa;)

Causal mechanism for X,
Xf,; Z:f A,B,...
8-

Direct causes of X,

() ()
 BudyNed  Swwenmlcwsalmodes  25/38
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Structural causal models (SCMs)

Exogenous variables

B := fp(A,Ug)
M : C = fC(AanUC)
D — fD(A,C, UD)

SCM Definition

A tuple of the following sets:

1. A set of endogenous variables

2. A set of exogenous variables

3. A set of functions, one to generate

each endogenous variable as a
function of the other variables Endogenous variables
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Modularity assumption for SCMs

Consider an SCM M and an interventional SCM M, that we get by
performing the intervention do(T = t). The modularity assumption states
that M and M, share all of their structural equations except the structural
equation for T, which is T := t in M..

T := X, U T :=1t
M fr(X, Ur) My -
Y = fy(X,T,Uy) Y = fy(X,T,Uy)
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Why not condition on descendants of treatment:
inducing new post-treatment association

Collider bias

Rule: don’t condition on post-treatment covariates




Inducing new pretreatment association (M-bias)
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Inducing new pretreatment association (M-bias)

Z s

D

See Flwert & Winship (2014) for many real examples of collider bias



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6089543/

(Questions:

1. What are are the nonparametric
structural equations for this causal graph?

2. What are the endogenous and exogenous
variables in this causal graph?

3. What is collider bias?
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Problem: effect of sodium intake on blood pressure

Motivation: 46% of Americans have high blood pressure and high blood
pressure is associated with increased risk of mortality

Data:

* Epidemiological example taken from Luque-Fernandez et al. (2018)

* Outcome Y: (systolic) blood pressure (continuous)
* Treatment T: sodium intake (1 if above 3.5 mg and 0 if below)

e Covariates
* W age

* Z amount of protein excreted in urine

e Simulation:; so we know the “true” ATE 1s 1.05


https://academic.oup.com/ije/article/48/2/640/5248195

The causal graph

age

sodium intake ( 7 blood pressure

amount of protein excreted in urine
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Causal esttmand:
Statistical estimand
from last week:

Statistical estimand
from causal graph:

E[Y | do(?),

Ew, zEY | t, W, Z]

EWE[Y ’ t? W]
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Estimation of ATE

True ATE: E[Y (1) — Y (0)] = 1.05
Identification: E[Y (1) =Y (0)]=Ex [E[Y | T =1, X]| -E[Y | T =0, X]]

: . 1
Estimation: — Z[E[Y 1 T=1,X=ux;] —E[Y |T=0,X =z
n = ] | J
| |

Model (linear regression)

Estimates:

5.33 — 1.0
X ={} (naive): 5.33 | TO% | x 100% = 407% error T
X ={W,Z} (last week): 0.85 19% error

X ={W} (unbiased): 1.0502 0.02% error
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