Causal Models

Brady Neal

causalcourse.com

The Identification-Estimation Flowchart

Brady Neal 2 / 38

The Identification-Estimation Flowchart

Brady Neal 2 / 38

The Identification-Estimation Flowchart

Brady Neal 2 / 38

The do-operator

Main assumption: modularity

Backdoor adjustment

Structural causal models

A complete example with estimation

Brady Neal 3 / 38

The do-operator

Main assumption: modularity

Backdoor adjustment

Structural causal models

A complete example with estimation

Population

Population

Subpopulations

Population

Subpopulations

Conditioning

Population

Subpopulations

Conditioning

Intervening

Interventional distributions:

$$P(Y(t) = y)$$

Interventional distributions:

$$P(Y(t) = y) \triangleq P(Y = y \mid do(T = t))$$

Interventional distributions:

$$P(Y(t) = y) \triangleq P(Y = y \mid do(T = t)) \triangleq P(y \mid do(t))$$

Interventional distributions:

$$P(Y(t) = y) \triangleq P(Y = y \mid do(T = t)) \triangleq P(y \mid do(t))$$

Average treatment effect (ATE):

$$\mathbb{E}[Y \mid do(T=1)] - \mathbb{E}[Y \mid do(T=0)]$$

Interventional distributions:

$$P(Y(t) = y) \triangleq P(Y = y \mid do(T = t)) \triangleq P(y \mid do(t))$$

Average treatment effect (ATE):

$$\mathbb{E}[Y \mid do(T=1)] - \mathbb{E}[Y \mid do(T=0)]$$

Observational

Interventional distributions:

$$P(Y(t) = y) \triangleq P(Y = y \mid do(T = t)) \triangleq P(y \mid do(t))$$

Average treatment effect (ATE):

$$\mathbb{E}[Y \mid do(T=1)] - \mathbb{E}[Y \mid do(T=0)]$$

Observational

Interventional distributions:

$$P(Y(t) = y) \triangleq P(Y = y \mid do(T = t)) \triangleq P(y \mid do(t))$$

Average treatment effect (ATE):

$$\mathbb{E}[Y \mid do(T=1)] - \mathbb{E}[Y \mid do(T=0)]$$

$$P(Y \mid do(T=t))$$

Interventional distributions:

$$P(Y(t) = y) \triangleq P(Y = y \mid do(T = t)) \triangleq P(y \mid do(t))$$

Average treatment effect (ATE):

$$\mathbb{E}[Y \mid do(T=1)] - \mathbb{E}[Y \mid do(T=0)]$$

$$P(Y \mid T = t)$$

$$P(Y \mid do(T=t))$$

Interventional distributions:

$$P(Y(t) = y) \triangleq P(Y = y \mid do(T = t)) \triangleq P(y \mid do(t))$$

Average treatment effect (ATE):

$$\mathbb{E}[Y \mid do(T=1)] - \mathbb{E}[Y \mid do(T=0)]$$

$$P(Y \mid T = t)$$

$$P(Y \mid do(T = t))$$

$$P(Y \mid T = t) \qquad P(Y \mid do(T = t), X = x)$$

Accessible via experiment

Accessible via experiment

Accessible via experiment

Accessible via experiment

Accessible via experiment

The do-operator

Main assumption: modularity

Backdoor adjustment

Structural causal models

A complete example with estimation

Causal mechanism

Causal mechanism

If we intervene on a node X_i , then only the mechanism $P(x_i | pa_i)$ changes. All other mechanisms $P(x_j | pa_j)$ where $i \neq j$ remain unchanged.

If we intervene on a node X_i , then only the mechanism $P(x_i | pa_i)$ changes. All other mechanisms $P(x_j | pa_j)$ where $i \neq j$ remain unchanged.

In other words, the causal mechanisms are modular.

If we intervene on a node X_i , then only the mechanism $P(x_i | pa_i)$ changes. All other mechanisms $P(x_j | pa_j)$ where $i \neq j$ remain unchanged.

In other words, the causal mechanisms are modular.

Many names: independent mechanisms, autonomy, invariance, etc.

If we intervene on a set of nodes $S \subseteq [n]$, setting them to constants, then for all i, we have the following:

If we intervene on a set of nodes $S \subseteq [n]$, setting them to constants, then for all i, we have the following:

1. If $i \notin S$, then $P(x_i \mid pa_i)$ remains unchanged.

If we intervene on a set of nodes $S \subseteq [n]$, setting them to constants, then for all i, we have the following:

- 1. If $i \notin S$, then $P(x_i \mid pa_i)$ remains unchanged.
- 2. If $i \in S$, then $P(x_i \mid pa_i) = 1$ if x_i is the value that X_i was set to by the intervention; otherwise, $P(x_i \mid pa_i) = 0$.

If we intervene on a set of nodes $S \subseteq [n]$, setting them to constants, then for all i, we have the following:

- 1. If $i \notin S$, then $P(x_i \mid pa_i)$ remains unchanged.
- 2. If $i \in S$, then $P(x_i \mid pa_i) = 1$ if x_i is the value that X_i was set to by the intervention; otherwise, $P(x_i \mid pa_i) = 0$.

consistent with the intervention

Observational data

Observational data

Observational data

Observational data

Observational data

Observational data

Observational data

What would it mean if modularity is violated?

What would it mean if modularity is violated?

Intervention on T not only changes $P(T \mid pa(T))$

What would it mean if modularity is violated?

Intervention on T not only changes $P(T \mid pa(T))$

but also changes other mechanisms such as $P(T_2 \mid pa(T_2))$

Recall the Bayesian network factorization:

$$P(x_1,\ldots,x_n) = \prod_i P(x_i \mid pa_i)$$

Truncated factorization:

$$P(x_1, \dots, x_n \mid do(S = s)) = \prod_i P(x_i \mid pa_i)$$

Truncated factorization:

$$P(x_1, \dots, x_n \mid do(S = s)) = \prod_{i \notin S} P(x_i \mid pa_i)$$

Truncated factorization:

$$P(x_1, \dots, x_n \mid do(S = s)) = \prod_{i \notin S} P(x_i \mid pa_i)$$

if x is consistent with the intervention.

Truncated factorization:

$$P(x_1, \dots, x_n \mid do(S = s)) = \prod_{i \notin S} P(x_i \mid pa_i)$$

if x is consistent with the intervention.

Otherwise,

$$P(x_1,\ldots,x_n\mid do(S=s))=0$$

Goal: identify $P(y \mid do(t))$

Goal: identify $P(y \mid do(t))$

Bayesian network factorization: $P(y, t, x) = P(x) P(t \mid x) P(y \mid t, x)$

Goal: identify $P(y \mid do(t))$

Bayesian network factorization: $P(y,t,x) = P(x) P(t \mid x) P(y \mid t,x)$

Truncated factorization: $P(y, x \mid do(t)) = P(x) P(y \mid t, x)$

Goal: identify $P(y \mid do(t))$

Bayesian network factorization: $P(y, t, x) = P(x) P(t \mid x) P(y \mid t, x)$

Truncated factorization: $P(y, x \mid do(t)) = P(x) P(y \mid t, x)$

Marginalize: $P(y \mid do(t)) = \sum_{x} P(y \mid t, x) P(x)$

$$P(y \mid do(t)) = \sum_{x} P(y \mid t, x) P(x)$$

$$T$$

$$P(y \mid do(t)) = \sum_{x} P(y \mid t, x) P(x)$$

$$P(y \mid do(t)) \neq P(y \mid t)$$

$$T$$

$$P(y \mid do(t)) = \sum_{x} P(y \mid t, x) P(x)$$

$$P(y \mid do(t)) \neq P(y \mid t)$$

$$T$$

$$Y$$

$$\sum_{x} P(y \mid t, x) P(x)$$

$$P(y \mid do(t)) = \sum_{x} P(y \mid t, x) P(x)$$

$$P(y \mid do(t)) \neq P(y \mid t)$$

$$T$$

$$Y$$

$$\sum_{x} P(y \mid t, x) P(x \mid t)$$

$$P(y \mid do(t)) = \sum_{x} P(y \mid t, x) P(x)$$

$$P(y \mid do(t)) \neq P(y \mid t)$$

$$T$$

$$Y$$

$$\sum_{x} P(y \mid t, x) P(x \mid t) = \sum_{x} P(y, x \mid t)$$

$$P(y \mid do(t)) = \sum_{x} P(y \mid t, x) P(x)$$

$$P(y \mid do(t)) \neq P(y \mid t)$$

$$T$$

$$Y$$

$$\sum_{x} P(y \mid t, x) P(x \mid t) = \sum_{x} P(y, x \mid t)$$
$$= P(y \mid t)$$

$$P(y \mid do(t)) = \sum_{x} P(y \mid t, x) P(x)$$

$$P(y \mid do(t)) \neq P(y \mid t)$$

$$\sum_{x} P(y \mid t, x) P(x \mid t) = \sum_{x} P(y, x \mid t)$$
$$= P(y \mid t)$$

$$P(y \mid do(t)) = \sum_{x} P(y \mid t, x) P(x)$$

$$P(y \mid do(t)) \neq P(y \mid t)$$

$$T$$

$$Y$$

$$\sum_{x} P(y \mid t, x) P(x \mid t) = \sum_{x} P(y, x \mid t)$$
$$= P(y \mid t)$$

$$P(y \mid do(t)) = \sum_{x} P(y \mid t, x) P(x)$$

$$P(y \mid do(t)) \neq P(y \mid t)$$

$$T$$

$$\sum_{x} P(y \mid t, x) P(x \mid t) = \sum_{x} P(y, x \mid t)$$
$$= P(y \mid t)$$

$$P(y \mid do(t)) = \sum_{x} P(y \mid t, x) P(x)$$

$$P(y \mid do(t)) \neq P(y \mid t)$$

$$\sum_{x} P(y \mid t, x) P(x \mid t) = \sum_{x} P(y, x \mid t)$$
$$= P(y \mid t)$$

The do-operator

Main assumption: modularity

Backdoor adjustment

Structural causal models

A complete example with estimation

Blocking backdoor paths

A set of variables W satisfies the backdoor criterion relative to T and Y if the following are true:

A set of variables W satisfies the backdoor criterion relative to T and Y if the following are true:

- 1. Wolocks all backdoor paths from To Y
- 2.

A set of variables W satisfies the backdoor criterion relative to T and Y if the following are true:

- 1. Welocks all backdoor paths from To Y
- 2. Whoes not contain any descendants of T

A set of variables W satisfies the backdoor criterion relative to T and Y if the following are true:

- 1. Whocks all backdoor paths from T_0 Y
- 2. Whoes not contain any descendants of T

Given the modularity assumption and that W satisfies the backdoor criterion, we can identify the causal effect of T on Y:

$$P(y \mid do(t)) = \sum_{w} P(y \mid t, w) P(w)$$

$$P(y \mid do(t))$$

$$= \sum_{w} P(y \mid t, w) P(w)$$

$$P(y \mid do(t))$$

$$P(y \mid do(t)) = \sum_{w} P(y \mid do(t), w) P(w \mid do(t))$$

$$P(y \mid do(t)) = \sum_{w} P(y \mid do(t), w) P(w \mid do(t))$$
$$= \sum_{w} P(y \mid t, w) P(w \mid do(t))$$

$$P(y \mid do(t)) = \sum_{w} P(y \mid do(t), w) P(w \mid do(t))$$

$$= \sum_{w} P(y \mid t, w) P(w \mid do(t))$$

$$= \sum_{w} P(y \mid t, w) P(w)$$

- 1. Whocks all backdoor paths from T_0 Y
- 2.

- 1. Whocks all backdoor paths from To Y
- 2.

- 1. Wolocks all backdoor paths from To Y
- 2. Whoes not contain any descendants of T

- 1. Whocks all backdoor paths from To Y
- 2. Whoes not contain any descendants of T

- 1. Whocks all backdoor paths from T_0 Y
- 2. Whoes not contain any descendants of T

- 1. Wolocks all backdoor paths from To Y
- 2. Whoes not contain any descendants of T

$$Y \perp \!\!\! \perp_{G_{\overline{T}}} T \mid W$$

Question:

How does this backdoor adjustment relate to the adjustment formula we saw in the potential outcomes lecture?

Backdoor adjustment:

$$P(y \mid do(t)) = \sum_{w} P(y \mid t, w) P(w)$$

Adjustment formula from before:

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_W \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$

Question:

How does this backdoor adjustment relate to the adjustment formula we saw in the potential outcomes lecture?

Section 4.4.1 of the ICI book

Backdoor adjustment:

$$P(y \mid do(t)) = \sum_{w} P(y \mid t, w) P(w)$$

Adjustment formula from before:

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_{W} \left[\mathbb{E}[Y \mid T = 1, W] - \mathbb{E}[Y \mid T = 0, W] \right]$$

The do-operator

Main assumption: modularity

Backdoor adjustment

Structural causal models

A complete example with estimation

The equals sign does not convey any causal information.

The equals sign does not convey any causal information.

B = A means the same thing as A = B

The equals sign does not convey any causal information.

$$B = A$$
 means the same thing as $A = B$

Structural equation for A as a cause of B:

$$B := f(A)$$

The equals sign does not convey any causal information.

$$B = A$$
 means the same thing as $A = B$

Structural equation for A as a cause of B:

$$B := f(A)$$

$$B := f(A, U)$$

The equals sign does not convey any causal information.

B = A means the same thing as A = B

Structural equation for A as a cause of B:

$$B := f(A)$$

$$B := f(A, U)$$

Causal mechanisms and direct causes revisited

Causal mechanisms and direct causes revisited

Causal mechanism for X_i

$$X_i := f(A, B, \ldots)$$

Causal mechanisms and direct causes revisited

Causal mechanism for X_i

$$X_i := f(A, B, ...)$$
Direct causes of X_i

$$B := f_B(A, U_B)$$

$$M : C := f_C(A, B, U_C)$$

$$D := f_D(A, C, U_D)$$

$$B := f_B(A, U_B)$$

$$M : C := f_C(A, B, U_C)$$

$$D := f_D(A, C, U_D)$$

$$B := f_B(A, U_B)$$

$$M : C := f_C(A, B, U_C)$$

$$D := f_D(A, C, U_D)$$

Endogenous variables

$$B := f_B(A, U_B)$$

$$M : C := f_C(A, B, U_C)$$

$$D := f_D(A, C, U_D)$$

Exogenous variables

Endogenous variables

$$B := f_B(A, U_B)$$

$$M : C := f_C(A, B, U_C)$$

$$D := f_D(A, C, U_D)$$

SCM Definition

A tuple of the following sets:

- 1. A set of endogenous variables
- 2. A set of exogenous variables
- 3. A set of functions, one to generate each endogenous variable as a function of the other variables

Exogenous variables

Endogenous variables

Interventions

$$M: T := f_T(X, U_T)$$
$$Y := f_Y(X, T, U_Y)$$

27 / 38

Interventions

$$M:$$

$$T := f_T(X, U_T)$$
$$Y := f_Y(X, T, U_Y)$$

$$M_t:$$

$$T := t$$

$$Y := f_Y(X, T, U_Y)$$

Interventions

$$M:$$

$$T := f_T(X, U_T)$$
$$Y := f_Y(X, T, U_Y)$$

Interventional SCM (submodel)

$$M_t$$
:

$$M_t:$$

$$T := t$$

$$Y := f_Y(X, T, U_Y)$$

Modularity assumption for SCMs

Consider an SCM M and an interventional SCM M_t that we get by performing the intervention do(T = t). The modularity assumption states that M and M_t share all of their structural equations except the structural equation for T, which is T := t in M_t .

Modularity assumption for SCMs

Consider an SCM M and an interventional SCM M_t that we get by performing the intervention do(T = t). The modularity assumption states that M and M_t share all of their structural equations except the structural equation for T, which is T := t in M_t .

$$M:$$

$$T := f_T(X, U_T)$$

$$Y := f_Y(X, T, U_Y)$$

$$M_t:$$

$$Y := f_Y(X, T, U_Y)$$

Why not condition on descendants of treatment: blocking causal association

Why not condition on descendants of treatment: blocking causal association

Inducing new **pre**treatment association (M-bias)

Inducing new pretreatment association (M-bias)

See Elwert & Winship (2014) for many real examples of collider bias

Questions:

- 1. What are are the nonparametric structural equations for this causal graph?
- 2. What are the endogenous and exogenous variables in this causal graph?
- 3. What is collider bias?

The do-operator

Main assumption: modularity

Backdoor adjustment

Structural causal models

A complete example with estimation

Motivation: 46% of Americans have high blood pressure and high blood pressure is associated with increased risk of mortality

Motivation: 46% of Americans have high blood pressure and high blood pressure is associated with increased risk of mortality

Data:

• Epidemiological example taken from <u>Luque-Fernandez et al. (2018)</u>

Motivation: 46% of Americans have high blood pressure and high blood pressure is associated with increased risk of mortality

- Epidemiological example taken from <u>Luque-Fernandez et al. (2018)</u>
- Outcome Y: (systolic) blood pressure (continuous)

Motivation: 46% of Americans have high blood pressure and high blood pressure is associated with increased risk of mortality

- Epidemiological example taken from <u>Luque-Fernandez et al. (2018)</u>
- Outcome Y: (systolic) blood pressure (continuous)
- Treatment T: sodium intake (1 if above 3.5 mg and 0 if below)

Motivation: 46% of Americans have high blood pressure and high blood pressure is associated with increased risk of mortality

- Epidemiological example taken from <u>Luque-Fernandez et al. (2018)</u>
- Outcome Y: (systolic) blood pressure (continuous)
- Treatment T: sodium intake (1 if above 3.5 mg and 0 if below)
- Covariates
 - Wage
 - Z amount of protein excreted in urine

Motivation: 46% of Americans have high blood pressure and high blood pressure is associated with increased risk of mortality

- Epidemiological example taken from <u>Luque-Fernandez et al. (2018)</u>
- Outcome Y: (systolic) blood pressure (continuous)
- Treatment T: sodium intake (1 if above 3.5 mg and 0 if below)
- Covariates
 - Wage
 - Z amount of protein excreted in urine
- Simulation: so we know the "true" ATE is 1.05

The causal graph

Causal estimand: $\mathbb{E}[Y \mid do(t)]$

Causal estimand:

 $\mathbb{E}[Y \mid do(t)]$

Statistical estimand from last week:

 $\mathbb{E}_{W,Z}\mathbb{E}[Y \mid t, W, Z]$

Causal estimand:

 $\mathbb{E}[Y \mid do(t)]$

Statistical estimand from last week:

 $\mathbb{E}_{W,Z}\mathbb{E}[Y \mid t, W, Z]$

Causal estimand:

 $\mathbb{E}[Y \mid do(t)]$

Statistical estimand from last week:

 $\mathbb{E}_{W,Z}\mathbb{E}[Y \mid t, W, Z]$

Causal estimand:

 $\mathbb{E}[Y \mid do(t)]$

Statistical estimand from last week:

 $\mathbb{E}_{W,Z}\mathbb{E}[Y \mid t, W, Z]$

Statistical estimand from causal graph:

 $\mathbb{E}_W \mathbb{E}[Y \mid t, W]$

Estimation of ATE

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation:

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation: $\frac{1}{n} \sum_{i} [\mathbb{E}[Y \mid T = 1, X = x_i] - \mathbb{E}[Y \mid T = 0, X = x_i]]$

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation:
$$\frac{1}{n} \sum_{i} \left[\mathbb{E}[Y \mid T = 1, X = x_i] - \mathbb{E}[Y \mid T = 0, X = x_i] \right]$$

Model (linear regression)

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation:
$$\frac{1}{n} \sum_{i} \left[\mathbb{E}[Y \mid T = 1, X = x_i] - \mathbb{E}[Y \mid T = 0, X = x_i] \right]$$

Model (linear regression)

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation:
$$\frac{1}{n} \sum_{i} \left[\mathbb{E}[Y \mid T = 1, X = x_i] - \mathbb{E}[Y \mid T = 0, X = x_i] \right]$$

Model (linear regression)

$$X = \{\}$$
 (naive): 5.33

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation:
$$\frac{1}{n} \sum_{i} \left[\mathbb{E}[Y \mid T = 1, X = x_i] - \mathbb{E}[Y \mid T = 0, X = x_i] \right]$$

Model (linear regression)

$$X = \{\}$$
 (naive): 5.33

$$\frac{|5.33 - 1.05|}{1.05} \times 100\% = 407\%$$
 error

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation:
$$\frac{1}{n} \sum_{i} \left[\mathbb{E}[Y \mid T = 1, X = x_i] - \mathbb{E}[Y \mid T = 0, X = x_i] \right]$$

Model (linear regression)

$$X = \{\}$$
 (naive): 5.33

$$\frac{|5.33 - 1.05|}{1.05} \times 100\% = 407\%$$
 error

$$X = \{W, Z\}$$
 (last week): 0.85

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation:
$$\frac{1}{n} \sum_{i} \left[\mathbb{E}[Y \mid T = 1, X = x_i] - \mathbb{E}[Y \mid T = 0, X = x_i] \right]$$

Model (linear regression)

Estimates:

$$X = \{\}$$
 (naive): 5.33

$$\frac{|5.33 - 1.05|}{1.05} \times 100\% = 407\%$$
 error

$$X = \{W, Z\}$$
 (last week): 0.85

19% error

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation:
$$\frac{1}{n} \sum_{i} \left[\mathbb{E}[Y \mid T = 1, X = x_i] - \mathbb{E}[Y \mid T = 0, X = x_i] \right]$$

Model (linear regression)

Estimates:

$$X = \{\}$$
 (naive): 5.33

$$\frac{|5.33 - 1.05|}{1.05} \times 100\% = 407\%$$
 error

$$X = \{W, Z\}$$
 (last week): 0.85

19% error

$$X = \{W\}$$
 (unbiased): 1.0502

True ATE: $\mathbb{E}[Y(1) - Y(0)] = 1.05$

Identification: $\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_X [\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Estimation:
$$\frac{1}{n} \sum_{i} \left[\mathbb{E}[Y \mid T = 1, X = x_i] - \mathbb{E}[Y \mid T = 0, X = x_i] \right]$$

Model (linear regression)

$$X = \{\}$$
 (naive): 5.33

$$\frac{|5.33 - 1.05|}{1.05} \times 100\% = 407\%$$
 error

$$X = \{W, Z\}$$
 (last week): 0.85

$$X = \{W\}$$
 (unbiased): 1.0502

$$0.02\%$$
 error

