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Randomized experiments are magic.



Randomized experiments are magic.

No unobserved confounding
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Few different perspectives on the magic

Comparability and covariate balance
Exchangeability

No backdoor paths
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Comparability and covariate balance: intuition

Treatment and control groups are the same in all aspects except treatment
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Covariate balance implies association is causation
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PX|T=1)2P(X|T=0) = T 1 X Let X be a sufficient adjustment set

(y | do(t) ZP | t,z)P
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(Question:

Write down the formal definition of
(mean) exchangeability. Then, prove that
this ylelds “association 1s causation.”
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No backdoor paths




(Question:
What previous result tells us that
assoclation 1s causation in this graph?

@ .



The magic of randomized experiments
Frontdoor adjustment
Pearl’s do-calculus

Determining identifiability from the graph



Recall the backdoor adjustment

P(Y | 1)
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Frontdoor adjustment: big picture
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Identify the causal effect of T on M

P(m | do(t)) = P(m | t)

Step 1




Frontdoor adjustment: step 2

Identify the causal effect of M on Y
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Identify the causal effect of M on Y
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Frontdoor adjustment: step 2

Identify the causal effect of M on Y
P(y | do(m)) =Y P(y|m,t)P(t)
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Frontdoor adjustment: step 3

Combine steps 1 and 2 to identify the causal effect of Ton Y
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Frontdoor adjustment: step 3

Combine steps 1 and 2 to identify the causal effect of Ton Y

Goal
P(y | do(t) ZPm|d0 (y | do(m))

:ZPmH ZPy[m,t’)P(t’) W
m t’
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The trontdoor adjustment and criterion

P(y | do(t)) =) P(m|t) Y Ply|m,t)P(t)
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The trontdoor adjustment and criterion

If (T, M, Y) satisfy the frontdoor criterion, and we have positivity, then

P(y | do(t) mey > P(y|m,t")P(t)

A set of variables M satisfies the frontdoor criterion relative to T and Y

it the following are true:

1. M completely mediates the effect of T onY (i.e. all causal paths from
T to Y go through M).

2. 'There 1s no unblocked backdoor path from T to M.

3. All backdoor paths from M to Y are blocked by T.



See prootf of frontdoor adjustment using
the truncated factorization in Section 6.1
of the course book



https://www.bradyneal.com/causal-inference-course

(Question:
What 1s the intuition for why the frontdoor
criterion gives us identifiability?




The magic of randomized experiments

Frontdoor adjustment
Pearl’s do-calculus

Determining identifiability from the graph



Can we identity the causal etfect
if netther the backdoor criterion
nor the frontdoor criterion 1s
satistied?



Yes, and do-calculus tells us how.



Pearl’s do-calculus

Will allow us to identify any causal quantity that 1s identifiable




Pearl’s do-calculus

Will allow us to identify any causal quantity that 1s identifiable

P(Y | do(T = 1), X = )




Pearl’s do-calculus

Will allow us to identify any causal quantity that 1s identifiable

P(Y | do(T = 1), X = )

where Y, T, and X are arbitrary sets




Pearl’s do-calculus

Will allow us to identify any causal quantity that 1s identifiable
P(Y | do(T =1),X = x)

where Y, T, and X are arbitrary sets

Multiple treatments and/or multiple outcomes
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Rule 1 of do-calculus

P(y | do(t),z,w) = P(y | do(t),w) if YV llg_ Z|T,W
Question: What concept does this remind you of?

Rule 1 with do(t) removed:
Ply|z,w)=Ply|lw) if Y UsgZ|W

Generalization of d-separation to interventional distributions
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P(y | do(t),do(2),w) = P(y | do(t),z,w) if YV llqg.  Z|T,W
Question: What concept does this remind you of?

Rule 2 with do(t) removed:
P(y | do(z),w) =Py | z,w) it Y g, Z2|W

Generalization of backdoor adjustment/criterion
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The rules of do-calculus

Rule 1: P(y | do(t),z,w) = P(y | do(t),w) if Y llg_ Z|T,W
Rule 2:  P(y | do(t), do(z),w) = P(y | do(t),2,w) if Y Uq. Z[T,W
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The rules of do-calculus

Rule 1: P(y | do(t),z,w) = P(y | do(t),w) if Y llg_ Z|T,W

Rule 2:  P(y | do(t), do(z),w) = P(y | do(t),2,w) if Y Uq. Z[T,W

Rule 3: P(y | do(t), do(z),w) = P(y | do(t),w) if ¥V llg. s Z|T\W

(W

Proot of the frontdoor adjustment using do-calculus in Section 6.2.1 of the
course book (compare with proof using truncated factorization in Section 6.1)
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Maybe there are some identifiable causal estimands that can’t be identified
using the rules of do-calculus

Fortunately, not, as do-calculus 1s complete (Shpitser & Pearl, 2006a; Huang
& Valtorta, 2006; Shpitser & Pearl, 2006b)



https://ftp.cs.ucla.edu/pub/stat_ser/r327.pdf
https://arxiv.org/abs/1206.6831
https://arxiv.org/abs/1206.6876

Completeness of do-calculus

Maybe there are some identifiable causal estimands that can’t be identified
using the rules of do-calculus

Fortunately, not, as do-calculus 1s complete (Shpitser & Pearl, 2006a; Huang
& Valtorta, 2006; Shpitser & Pearl, 2006b)

Constructive proofs that admit polynomial time algorithms for
identification


https://ftp.cs.ucla.edu/pub/stat_ser/r327.pdf
https://arxiv.org/abs/1206.6831
https://arxiv.org/abs/1206.6876

(Question:
What concepts are the first and second
rules ot do-calculus generalizations of?



Determining identifiability from the graph



Question:
In this graph, 1s the

backdoor criterion satisfied?




Question:
In this graph, 1s the

backdoor criterion satisfied?

How about the frontdoor
criterion?




Unconfounded children criterion

This criterion 1s satistied if it is possible
to block all backdoor paths from the
treatment variable T to all of its children
that are ancestors of Y with a single
conditioning set (Tian & Pearl, 2002).
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when T is a single variable
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This criterion 1s satistied if it is possible
to block all backdoor paths from the
treatment variable T to all of its children
that are ancestors of Y with a single
conditioning set (Tian & Pearl, 2002).
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when T is a single variable

causal association
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Necessary condition for identifiability

For each backdoor path from T to any child M of T that is an ancestor of
Y, it 1s possible to block that path (Pearl, 2009, p. 92).
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(Shpitser & Pearl, 2006a; Huang & Valtorta, 2006; Shpitser & Pearl, 2006b)
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Questions:
1.  Is the unconfounded children criterion satisfied here?
2. How about here?

3.  Can we get identifiability via any simpler criterion that
we've seen before?
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