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Assumption 2: Exclusion Restriction

The causal effect of Z on Y is fully mediated by T

Recall:

Removing edges corresponds to adding assumptions




Assumption 3: Instrumental Unconfoundedness

Z. 1s unconfounded (no unblockable backdoor paths to Y)
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Conditional Instruments

Slightly weaker version of Assumption 3:

Unconfoundedness after conditioning
on observed variables




(Question:

What are the 3 assumptions we need to say
that a given variable 1s an instrument, and
what do they correspond to graphically?
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No Nonparametric Identification of the ATE

Why didn’t we see instruments in Week 5 Identification?

Week 5 was about nonparametric identification

Recall necessary condition for nonparametric identification:

For each backdoor path from T to any child that is an ancestor of Y, it is
possible to block that path -
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Wald estimand:

_EY|Z=1]-E[Y|Z=0
- E[T|Z=1-E[T|Z =0

0

Wald estimator:
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Continuous Linear Setting

CE[Y|Z=1-E[Y | Z =0

5‘Eﬁ|Z:ﬂ-E@\Z:@

-
)

Y =0T+ a, U




Continuous Linear Setting

CE[Y|Z=1-E[Y | Z =0

5‘Eﬁ|Z:ﬂ-E@\Z:@

What if T and Z are continuous?




Continuous Linear Setting

_E[Y|Z=1-E}Y|Z=0
CET|Z=1-E[T|Z=0]

~ Cov(Y, Z2)

g - Cov(T, Z)
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Two-Stage Least Squares Estimator

1. Lineatly regress T on Z to estimate E[T" | Z|. This gives us the
projection of T onto Z: T

2. Linearly regress Y on T to estimate E[Y | T]. Obtain our estimate § as
the fitted coefficient in front of 7.

Also works as an
estimator in the

N binary setting




(Question:
In the binary linear, setting where is each
assumption used in the proof below?

ElY |Z=1-E[Y|Z=0
= E[6T + a,U | Z = 1] —E[0T + a,U | Z = 0]
—0(E[T|Z=1-E[T|Z=0)+o, (E[U|Z=1-E[U | Z=0])
—§(E[T | Z =1 —E[T | Z = 0]) + o, (E[U] — E[U])
=S§(E[T|Z=1]-E[T|Z=0)]

s _EV|Z=1-E[Y|Z=0)
E[T|Z=1—-E[T|Z = (]




(Question:
In the continuous linear setting, prove the

following:
- Cov(Y, Z)

0= Cov(T, Z)
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Linear outcome assumption: Y := 67T + a,U

There are other variants of the linear outcome assumption that all require
the treatment effect to be homogeneous (the same for all units) in some

way (see, e.g., Section 16.3 of Hernan & Robins (2020))
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Linear Outcome Assumption as Homogeneity
Linear outcome assumption: Y := 67T + a,U

There are other variants of the linear outcome assumption that all require
the treatment effect to be homogeneous (the same for all units) in some

way (see, e.g., Section 16.3 of Hernan & Robins (2020))

Very restricting]


https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/

Can we get 1dentification without
parametric assumptions?
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We now have T'(Z =1) and T(Z = 0) or T'(1) and T'(0) for short
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Nonparametric Identification ot LATE
Under Monotonicity Assumption

Local ATE (LATE) or complier average causal effect (CACE):
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E[T|Z=1]—-E[T | Z = 0]
EY(T'=1)-Y(T'=0)] (ATE, for contrast) Y

EY(T=1)-Y(T =0)|T(1) =1,T(0) = 0] :\

This 1s the Wald estimand!
Problems:

* Monotonicity isn’t always satisfied

* Even if it is, we are usually interested in the average effect across the

whole population (ATE), rather than just the compliers (CACE)



Question:

What causal esttimand can we nonparametrically
identify with an instrument and the
monotonicity assumptions



What 1s an Instrument?

No Nonparametric Identification of the ATE
Warm-Up: Linear Setting
Nonparametric Identification of Local ATE

More General Settings for the ATE



Nonparametric Outcome with Additive Noise

Y = f(T,W)+U




Nonparametric Outcome with Additive Noise

Y = f(T,W)+U

where f can be some very flexible model such as a deep neural network
(see, e.g., Hartford et al. (2017), Xu et al. (2020), and references therein)



http://proceedings.mlr.press/v70/hartford17a.html
https://arxiv.org/abs/2010.07154

Nonparametric Outcome with Additive Noise

(Semi-paramettric)

Y :=f(T,W)+U

where f can be some very flexible model such as a deep neural network
(see, e.g., Hartford et al. (2017), Xu et al. (2020), and references therein)



http://proceedings.mlr.press/v70/hartford17a.html
https://arxiv.org/abs/2010.07154

Set Identification of ATE

(rather than point identification)
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Although, we can’t point identify the ATE, we can bound it.
See Section 8.2 of Pearl’s Causality book



http://bayes.cs.ucla.edu/BOOK-2K/
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Set Identification of ATE

(rather than point identification)

Although, we can’t point identify the ATE, we can bound it.
See Section 8.2 of Pearl’s Causality book

Similarly, we can relax the additive noise assumption if we are content with
set 1dentification, rather than point identification.

Previous slide (minus W): Y := f(T) 4+ U
Relaxing additive noise assumption: Y := f(T,U)

See Kilbertus et al. (2020) and references therein



http://bayes.cs.ucla.edu/BOOK-2K/
https://arxiv.org/abs/2006.06366

