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WHAT IS MISSING TOWARDS HUMAN-LEVEL Al?

* Al systems which actually understand the variables they manipulate
(including language, perception and action)

 What does ‘understanding” mean?

* They capture causality

* They capture how the world works Human
Level
* They understand abstract actions and how use them to control Al

* They can reason and plan, even in novel scenarios

* They can explain what happened (inference, credit assignment)

 They can generalize out-of-distribution



* Learning theory only deals with generalization
within the same distribution

* Models learn but do not generalize well (or have
high sample complexity when adapting) to
modified distributions, non-stationarities, etc.



Missing from Current ML:
Understanding & Greneralization
Beyond the Training Distribution

* |f notiid, need alternative assumptions,
otherwise no reason to expect generalization

* How do distributions change?

* What knowledge can be re-used?



COMPOSITIONALITY HELPS |ID AND OOD GENERALIZATION

Different forms of compositionality
each with different exponential advantages

* Distributed representations
(Pascanu et al ICLR 2014)

 Composition of layers in deep nets

(Montufar et al NeurlPS 2014) ] ITNALV VP
IS NMIINSSAAT =S

* Systematic generalization in language, (Lee, Grosse, Ranganath &
: : Ng, ICML 2009
analogies, abstract reasoning? TBD 9 )
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SYSTEMATIC GENERALIZATION

Studied in linguistics

 Dynamically recombine existing concepts

* Even when new combinations have 0 probability
under training distribution

(Lake et al 2015)

 E.g. Science fiction scenarios

* E.g. Driving in an unknown city

* Not very successful with current DL, which can

“overfit” the training distribution

(Lake & Baroni 2017)

(Bahdanau et al & Courville ICLR 2019)

CLOSURE: (Bahdanau et al & Courville arXiv:1912.05783) on CLEVR
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CONSCIOUS PROCESSING HELPS HUMANS DEAL WITH OOD SETTINGS

Faced with novel or rare situations, humans call upon conscious attention to combine
on-the-fly the appropriate pieces of knowledge, to reason with them and imagine

solutions.

- we do not follow our habitual routines, we think hard to solve problems.
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AGENT LEARNING NEEDS OOD
GENERALIZATION

Agents face non-stationarities

Changes in distribution due to
* their actions
 ESPECIALLY:

* actions of other agents

e different places, times, sensors,
actuators, goals, policies, etc.

Multi-agent systems: many changes in distribution
Ood generalization needed for continual learning
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SYSTEM 1 VS. SYSTEM 2 COGNITION

2 systems (and categories of cognitive tasks): Manipulates high-level /
semantic concepts, which can

be recombined
combinatorially =

System 1 System 2

THINKING,
* Intuitive, fast, UNCONSCIOUS, 1-step * Slow, logical, sequential, CONSCIOUS,

FAST.. SLOW

parallel, non-linguistic, habitual linguistic, algorithmic, planning, reasoning
* Implicit knowledge — * Explicit knowledge
DANIEL
* Current DL * DL2.0

KAHNEMAN

i - W “tof%ay Mame Attention'While Driving




IMPLICIT VS VERBALIZABLE KNOWLEDGE: UNDERLYING ASSUMPTIONS
BEHIND VERBALIZABLE KNOWLEDGE

* Most knowledge in our brain is implicit and not verbalizable (hence the explainability
challenge, even for humans)

* Some of our knowledge is verbalizable and we can reason and plan explicitly with it
* The concepts manipulated in this way are those we can name with language
* Properties of joint distribution between these concepts and their change over time?

=>» clarify these assumptions as priors to be able to embed them in ML architectures and
training frameworks which bridge perception and reasoning



Independent Mechanisms

Scholkopf et al 2012

* Knowledge can be decomposed in informationally independent pieces (modules, mechanisms)
®* Any causal intervention normally affects just one such mechanism
®* Any other factorization would not have that property

®* Mechanisms can be used in many instances (e.g. same law of gravity)




SOME SYSTEM 2 INDUCTIVE PRIORS
all inspired by human cognition

* Sparse factor graph in space of high-level semantic variables

* Semantic variables are causal: agents, intentions, controllable objects

* Distributional changes due to localized causal interventions (in semantic space)

* Simple mapping between high-level semantic variables / thoughts and words / sentences
* Shared ‘generic rules’ across instances (as arguments), requiring variables & indirection

* Meaning (e.g. grounded by an encoder) is stable & robust wrt changes in distribution

* Credit assighment is only over short causal chains
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SOME SYSTEM 2 INDUCTIVE PRIORS
all inspired by human cognition

e Sparse factor graph in space of high-level semantic variables



CONSCIOUSNESS PRIOR

=» SPARSE FACTOR GRAPH
Bengio 2017, arXiv:1709.08568

* Property of high-level variables which we manipulate
with language: we can
predict some given very few others

E.g. "if  drop the ball, it will fall on the ground”

* Disentangled factors #marginally independent,
e.g. ball & hand

* Prior: sparse factor graph joint distribution between \O\
high-level variables

* Inference involves few variables at a time, selected by
attention mechanism and memory retrieval O I\Q



SOME SYSTEM 2 INDUCTIVE PRIORS
all inspired by human cognition

 Semantic variables are causal: agents, intentions, controllable objects



WHAT CAUSAL VARIABLES?

/R

® o6

* Physics: position and momentum of every particle

 Computationally intractable

 Scientists (and other humans) invent higher-level abstraction which make
it easier to model causal structure of the world

e Can ML also do it?
* Human brains are complex machines
e Hence it is feasible

X 7

. .-/‘.<_>.\ [

000~

Y e lia 16
(Y 3%



AGENCY TO GUIDE

REPRESENTATION LEARNING
& DISENTANGLING

(E. Bengio et al, 2017; V. Thomas et al, 2017; more recently see Kim et al ICML 2019)

Some factors (e.g. objects) correspond to ‘independently controllable’
aspects of the world

* Maximize mutual information between intentions (goal-conditioned policies) and
changes in the state (trajectories), conditioned on the current state.

Can only be discovered by acting in the world

* Control linked to notion of objects & agents

* Causal but agent-specific & subjective: affordances
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FROM PERCEPTION TO MODELLING THE WORLD AT THE SEMANTIC-LEVEL

Causal model

What are the right representations? causal variables explaining the data

—@®
e

How is raw sensory data mapped to high-level causal variables VAN

How to discover them (as a function of observed data)?
How to discover their causal relationship, the causal graph?

How are actions corresponding to causal interventions?

and how do high-level causal variables turn into low-level
actions and partial observations? ENCODER |/ DECODER

N

Raw input/output
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SOME SYSTEM 2 INDUCTIVE PRIORS
all inspired by human cognition

* Distributional changes due to localized causal interventions (in semantic space)
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INDEPENDENT MECHANISMS: SPARSE CHANGE IN ABSTRACT LATENT SPACE

Sparse joint in abstract space

Localized
change in
Change may be drastic in pixel distribution

space but tiny in semantic
o .

Raw input

Raw input
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WHAT CAUSES CHANGES IN DISTRIBUTION?

Underlying physics: actions are localized

Hypothesis to replace iid assumption: in space and time.

changes = consequence of an intervention on few causes or mechanisms

Extends the hypothesis of (informationally) Independent Mechanisms (Scholkopf et al 2012)

=» local inference or adaptation in the right model

Change due
to intervention
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COUNTING ARGUMENT:
LOCALIZED CHANGE—->OOD TRANSFER

Good representation of variables and mechanisms + localized change hypothesis

— few bits need to be accounted for (by inference or adaptation)

— few observations (of modified distribution) are required

— good ood generalization/fast transfer/small ood sample complexity

Change due
to intervention




CAUSALINDUCTION FROM INTERVENTION DATA

Recovery of causal model from data

Observational data:
o Distinguishes causal models only up to Markov equivalence class

Intervention data:

o What causal induction requires
o Most work assumes known-intervention data

o Real world: Other agents or environment can intervene
* Hence, interventions unknown

o How to handle unknown intervention?
* Infer it
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EXAMPLE: DISCOVERING CAUSE AND EFFECT
= HOW TO FACTORIZE A JOINT DISTRIBUTION?

A Meta-Transfer Objective for Learning to A
Disentangle Causal Mechanisms

* Learning whether A causes B or vice-versa
* Learning to disentangle (A,B) from observed (X,Y) X ‘

* Exploit changes in distribution and speed of
adaptation to guess causal direction

ICLR 2020: A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms,
Bengio, Deleu, Rahaman, Ke, Lachapelle, Bilaniuk, Goyal, Pal
ArXiv:1901.10912



Experimental setup

Consider two r.v. A and B, where A causes B.

The correct causal model decomposes as
p(A,B) =p(A)p(B | A)

Consider two distributions, where only p(A) changes
and p(B | A) remains unchanged (covariate shift).

A training distribution P

A transfer distribution P

If we train a model using data from P using the correct
decomposition, then adaptation on P is fast because

" -alogpg(B | A)- —0
“p(B|A) BY: —

when pg(B | A) =p(B | A)




Wrong knowledge factorization leads to poor transfer

With the wrong factorization p(B)p(A | B)

a change in p(A) influences all the modules. Correct causal structure: (4 )——(B)
Poor transfer: all the parameters need
to be adapted.

This is the normal situation with standard
neural networks: every parameter
participates to every relationship between all
the variables.

This causes catastrophic forgetting, poor —4.81
transfer, difficulties with continual , oo
learning or domain adaptation, etc. ) E——— e —

102 103 104

10 10
[ Number of examples

Use the speed of adaptation as a way to find
the correct factorization. . Faster online adaptation to modified distribution = lower NLL regret

. Effect of the correct factorization is most evident with only a few
samples from modified distribution



The Meta-Transfer Objective

Quantify the speed of adaptation with the online likelihood

znt

. )
Hp x;; 0%, G) O = 0" (Dop)
| | O(tH) — O(t) + aVy log p(x; ; H(t) ,G)

Adaptation with gradient ascent
Doos IS a large training dataset sampled from P
D.; is a small transfer dataset sampled from P

Smooth parametrization of the causal structure
R(Dint) = —loglo(v)La-B(Dint) + (1 — (7)) LB A(Dint)]

Structural (meta-)parameter -y
If o(v) = 1, then the correct structure is recovered.



The Meta-Transfer Objective gradient

Proposition 2. The gradient of the negative log-likelihood of the transfer data D, in Equation (5)
wrt. the structural parameter 7y is given by

OR
oy =p(A — B) — p(A = B | Dint), (6)
where p(A — B | D;nt) is the posterior probability of the hypothesis A — B (when the alternative

is B — A). Furthermore, this can be equivalently written as

OR

3, o) —ely+4) (7)
where A =102 LA_g(Dint) —log L A(Dint) is the difference between the online log-likelihoods
of the two hypotheses on the transfer data D;;.

R(Dint) = —loglo(v)La—B(Dint) + (1 — (7)) LB A(Dint)]

Can be optimized wrt. ¥ with gradient descent



Experimental results - Discrete variables

10~ o mmmmmmmm—————————— oo
e
’
I
0.8 -1 @ >
I
|
|
0.6
©
0.4-
0.2 -
| >
—r- (D—®)
0o ~== N=100
0 100 200 300 400 500
Number of episodes
N\

~

Tabular representation of marginals and
conditionals of bivariate model
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Each conditional is represented by a one-hidden-layer
MLP with one-hot inputs, softmax outputs

+ Experiments on Linear Gaussian & Continuous multimodal variables (see Appendix).
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Disentangling the causes

.  Realistic settings: causal variables are not directly observed.
.  Need to learn an encoder which maps raw data to causal space.

.  Consider both the encoder parameters and the causal graph structural parameters as meta-
parameters trained together wrt proposed meta-transfer objective.

Data generation (unknown to the learner)
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. Simplest possible scenario: linear mixing (rotating decoder) and unmixing (rotating decoder)
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Experimental results - Disentangling the causes
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.  Recovers the correct encoder parameter (left), up to permutation.

. Simultaneously recovers causal direction (right).
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DISCOVERING LARGER CAUSAL GRAPHS

Learning Neural Causal Models from Unknown Interventions
Ke, Bilaniuk, Goyal, Bauer, Scholkopf, Larochelle, Pal & Bengio 2019 arXiv:1910.01075

Asia graph, CE on ground truth edges, comparison against other
* Learning small causal graphs, avoid exponential  causalinduction methods

eprOSion of # of graphs by parametrizing Our method (Eaton & Murphy, 2007a) (Peters et al., 2016) (Zheng et al., 2018)
factorized distribution over graphs 0.0 0.0 107 3]

* With enough observations of changes in D =
distribution: perfect recovery of the causal ,

graph without knowing the intervention; ® O
converges faster on sparser graphs .\ f

* Inference over the intervention: (oo
faster causal discovery l | l
£ Mila .
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HOW TO FACTORIZE AND LEARN THE BELIEF DISTRIBUTION OVER

( sampled graphs }
Phase 1 Phase 2
Graph fitting Graph scoring
Stop 01 not?
updated graph rewards

distributions
L Phase 3:
credit assignment

Figure 2: Workflow for our proposed
method SDI. Phase 1 samples graphs un-
der the model’s current belief about the
edge structure and fits parameters to obser-
vational data. Phase 2 scores a small set of
graphs against interventional data and as-
signs rewards according to graphs’ ability
to predict interventions. Phase 3 uses the
rewards from Phase 2 to update the beliefs
about the edge structure. If the believed
edge probabilities have all saturated near O
or 1, the method has converged.

Learning Neural Causal Models from Unknown

Interventions ke ot g/ 2019 arXiv:1910.01075

Dependency Structure Discovery from
Interventions  Keetal 2020, submitted

Use neural networks to present/ learn causal models
Parameters:

- Structural parameters

- Functional parameters

Method overview:

lterate:

1. P

2. P

3. P

nase 1: Graph fitting on observational data
nase 2: Graph scoring on interventional data

hase 3: Credit assignment to structural parameters

 Slolng) — 6 )LAR(X)
9ij = ZA‘C (k)( ) )

Vi, j € {O,...,M—l}
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MODEL ARCHITECTURE

Use N neural networks to represent causal graph with N variables

0 0.088 0.090 | . 0 0 0]
o(v)— | 0894 0 0045 | =5 Leaky
Each neural network models: 0973 0116 0 | | | —
- Who are the direct causal parents _

.  Structural parameters

Softmax

/

0
- What s the relationship between them
. 0
.  Functional parameters ]-hot sample 4/
0
1-hot sample B
1-hot sample C
I
— B N
N N
Masking sample with configuration MLP

°
@
( ) ( ]

() \./

030
%e®
/l\l/l\

~Sd
o0
I
\\/
?

o
l.\ ‘/



EXPERIMENTAL RESULTS

Table 1: Baseline comparisons: Structural Hamming Distance (SHD) (lower 1s better) for learned and ground-truth edges on various graphs
from both synthetic and real datasets, compared to [33], [48], [14], [11] and [10]. The proposed method (Structural Discovery from Interven-
tions (SDI)) 1s run on random seeds 1 — 5 and we pick the worst performing model out of the random seeds in the table. OOM: out of memory.
Our proposed method correctly recovers the true causal graph, with the exception of Sachs and full13, and it significantly outperforms all other
baseline methods.

Method Asia Sachs collider chain jungle collider  full
M 8 11 8 13 13 13 13

Zheng et al. [10] 14 22 18 39 22 24 71
Yu et al. [11] 10 19 7 14 16 12 77
Heinze-Deml et al. [48] 8 17 7 12 12 7 28
Peters et al. [33] 5 17 2 2 8 2 16
Eaton and Murphy [49] 0 OOM 7 OOM OOM OOM OOM

Proposed Method (SDI) 0 6 0 0 0 0 7

[10] Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. DAGs with NO TEARS: [33] Jonas Peters, Peter Biihlmann, and Nicolai Meinshausen. Causal inference by using invariant
Continuous optimization for structure learning. In Advances in Neural Information Processing prediction: identification and confidence intervals. Journal of the Royal Statistical Society:
Systems, pages 9472-9483, 2018. Series B (Statistical Methodology), 78(5):947-1012, 2016.

[11] Yue Yu, Jie Chen, Tian Gao, and Mo Yu. Dag-gnn: Dag structure learning with graph neural [49] Daniel Eaton and Kevin Murphy. Belief net structure learning from uncertain interventions. J
networks. arXiv preprint arXiv:1904.10098, 2019. Mach Learn Res, 1:1-48, 2007.

[48] Christina Heinze-Deml, Jonas Peters, and Nicolai Meinshausen. Invariant causal prediction for
nonlinear models. Journal of Causal Inference, 6(2), 2018.
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CONVERGENCE RATE FOR DIFFERENT GRAPHS
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Figure 10: Cross entropy (CE) and Area-Under-Curve (AUC/AUROC) for edge probabilities of learned graph against ground-truth for synthetic
SCMs. Error bars represent =10 over PRNG seeds 1-5. Left to right, up to down: chainM,jungleM,fullMM = 3...8(9...13in
Appendix 7.6.1). Graphs (3-13 variables) all learn perfectly with AUROC reaching 1.0. However, denser graphs (fullM) take longer to
converge.




Figure 12: Left to right, top to bottom Average cross-entropy loss of edge beliefs o () and Area-Under-Curve throughout training for the
synthetic graphs chainN, jungleN, colliderN and fullN, N=3-13, grouped by graph size. Error bars represent 1o over PRNG seeds

1-5.

Gamma Cross-Entropy (avg bits) Gamma Cross-Entropy (avg bits)

Gamma Cross-Entropy (avg bits)

DENSER GRAPHS ARE MORE CHALLENGING
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PARTIAL GRAPH RECOVERY

Table 4: Partial Graph Recovery on Alarm [51] and
Barley [52]. The model is asked to predict 50 edges
in Barley and 40 edges in Alarm. The accuracy is
measured in Structural Hamming Distance (SHD). SDI
achieved over 90% accuracy on both graphs.

Graph Alarm Barley

Number of variables 37 48
Total Edges 46 84
Edges to recover 40 50

Recovered Edges 37 45
Errors (in SHD) 3 5

Alarm [1]. Barclay [2].

[1]. . A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM Monitoring System: A Case Study with Two Probabilistic
Inference Techniques for Belief Networks. In Proceedings of the 2nd European Conference on Atrtificial Intelligence in Medicine, pages 247-256.

Springer-Verlag, 1989.
[2]. Preliminary model for barley developed under the project: "Production of beer from Danish malting barley grown without the use of pesticides"

« Oy Kristian Kristensen , llse A. Rasmussen and others.
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ABLATIONS

Generalizing to previously unseen interventions: Importance of predicting the intervention:

1.24
.
/T /N /-’\'/"‘. —— chain3, prediction
Table 2: Evaluating the consequences of a previously unseen intervention: (test 10K~ o L _ —chain3, ground truth
log-likelihood under intervention) 2 RN ‘.| 77 chaind, no prediction
o5 o \\ \ AR N\ —iorki, pl'(,‘.dl(};l()ll 1 A
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o . e z‘.r,ilrlmf]mif ground trut
Baseline -0.5036  -0.4562 -0.3628 -0.5082 Z06] N T cottiders, no prediction |
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< 0.4 ’
g
£
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n N — confounder3, LDAG
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: mportance of acyclic (LD regularizer:
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© 0.2
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OBSERVING OTHER AGENTS

* Can infants figure out causal structure in spite of being almost passive observers?

* Yes, if they exploit and infer the interventions made by other agents

* Qur approach does not require the learner to know what the action/intervention
was (but it could do inference over interventions)

* But more efficient learning if you can experiment and thus test hypotheses about
cause & effect
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SOME SYSTEM 2 INDUCTIVE PRIORS
all inspired by human cognition

* Simple mapping between high-level semantic variables / thoughts and words / sentences
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......
\

....



THOUGHTS, CONSCIOUSNESS, LANGUAGE

* Consciousness: from humans reporting

* High-level representations é ; language

* High-level concepts: meaning anchored in low-level
nerception and action =2 tie system 1 & 2

 Grounded high-level concepts

- better natural language understanding

 Grounded language learning e.g.
BabyAl: (Chevalier-Boisvert and al ICLR 2019)
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CORE INGREDIENT FOR CONSCIOUS PROCESSING:
ATTENTION Q0000000000000 0000

(Bahdanau et al ICLR 2015)

* Focus on aone or afew elements at a
time

* Content-based soft attention is convenient, Q0000 Q0000000
can backprop to learn where to attend

 Attention is an internal action, needs a -

learned attention policy (Egger et al 2019)

<

 Operating on unordered SETS of (key, value) pairs

e SOTA In NLP -

(X »a
AN .
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FROM ATTENTION TO INDIRECTION

* Attention = dynamic connection

- * Receiver gets the selected value

e Value of what? From where?

Attention - Also send ‘name’ (or key) of sender

 Keep track of 'named’ objects: indirection

-  Manipulate sets of objects (transformers)

P.S. contrary to convnets doing object recognition, sequential tasks involving memory and attention typically involve a
more difficult optimization problem, and fighting underfitting (including the issue of long-term dependencies)
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RIMS: MODULARIZE COMPUTATION AND OPERATE ON SETS OF
NAMED AND TYPED OBJECTS

Recurrent Independent Mechanisms Default Sparse Default Sparse
. dynamics Communication dynamics Communication
Goyal et al 2019, arXiv:1909.10893 r ~ S w
) Y | ) M)
Multiple recurrent sparsely interacting e’
modules, each with their own N \><
dynamics, with object (key/value pairs) ] A TN
. I > = - N >
input/outputs selected by multi-head ’ \‘t}
P / P Y S -~ — ) —_
attention L ht htj ht+1 \_ ht—l—l htg ht+2
. . S ~ [ meimaeis | = = Query
Results: better ood generalization ~d0 - .
Input k | / P Input """ » No Passing Gradient
Ongoing work: hierarchy, top-down | | £ctioinIH
. . (o & [nactive RIM
broadcaStlng’ Spatla/ layOUt Of | O Key-Value Attention
modules
:Mlla Builds on rich recent litterature on object-centric representations (mostly for images) %



RESULTS WITH RECURRENT INDEPENDENT MECHANISMS

* RIMs drop-in replacement for LSTMs in PPO baseline over all Atari games.

* Above O (horizontal axis) = improvement over LSTM.
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FROM ATTENTION TO CONSCIOUSNESS

C-word not taboo anymore in cognitive neuroscience

Global Workspace Theory Top-d
op-down

Bottom-up
(Baars 1988++, Dehaene 2003++) attention

attention

* Bottleneck of conscious processing

* WHY A BOTTLENECK? /jJ-/

lobe

\.\\

 Selected item is broadcast, stored in short-term
memory, conditions perception and action

* System 2-like sequential processing, conscious
reasoning & planning & imagination

* Canonlyrun1simulation at a time, unlike a movie,
only few abstract concepts involved at each step
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Modules + Global Workspace

1. Parallel, competing specialists 2. Write to shared workspace 3. Broadcast workspace contents
Adding a [:]
shared global = i
workspace
similar to the O O
GWT greatly O A
IMProves
RIMs \

Table 2: FourRoom Navigation Task: Success Rate of the _— without GW

proposed method vs. the baselines on the FourRoom naviga- 1.2 /

tion environment illustrated on the right, with the agent in 210 /

red, its field of visibility greyed out, and the object to get in g / _

green. Yo / with GW

RIMs | RMC | LSTM |  Ours S 05 // Tracking
0.72 +0.02 | 0.67+0.05 | 0.62 +0.02 | 0.96 = 0.02 5 04 / bouncing balls

cor 02 (Goyal et al 2020,
0o - submitted)
000\—/\— M I Ia 10 15 20 25 30 35 40 45
...._—/ Time steps



SCHEMAS AND SLOTS

Separate values (slots) from rules (schemas)

Ol?ject Schema 1 | Schema 2 | Schema 3 Figure 1° As a motivat-
Files Pacman Normal Scared . 1 h
Ghost Ghost ing example, we show
Top Frame two successive frames
SCOFF A v of the game PacMan
B v and show how procedu-
g 5 ral and declarative knowl-
E 7 edge must be dynamically
Bottom Frame factorized. The “B” ghost
A v has a persistent object
I >© 2 5 file (with its location and
Object Object Object Object D v VGlOCltY), yet 1tS proce-
file file file file B 7 dure mostly depends on
. : . . whether it is in its scared

or normal routine.

Figure 2: Our SCOFF model.
Schemata are sets of param-
eters that specify the dynam-
ics of objects. Object files
are active modules that main-
tain the time-varying state of
an object, seek information
from the input, and select
schemata for updating.

Object Files and Schemata: factorizing declarative and
procedural knowledge in dynamical systems

Lamb, Goyal, Blundell, Mozer, Beaudoin, Levine & Bengio,
submitted, 2020
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SCHEMAS AND SLOTS: RESULTS

Separate values (slots) from rules (schemas)

Number of Values | LSTM RIMS SCOFF
2 0.8731  0.0007  0.0005
3 1.3017  0.0009  0.0007
4 1.6789  0.0014  0.0013
5 2.0334 0.0045  0.0030
8 4.8872  0.0555 0.0191
9 7.3730 0.1958  0.0379
10 11.3595 0.8904  0.0539

Table 1: Adding Task: Mean test set error on 200 length

sequences with number of numbers to add varying among
{2,3,4,5,8,9,10}. The models are trained to add a mixture
of two and four numbers from sequences of length 50.

Experiments on Baby Al RL tasks show that slots
specialize on objects (like a key) and schematas

specialize on procedures (like opening a door) or object
detection (like being triggered when the key is in view).
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0.0 0.0 0

15 20 25 30 35 40 45 15 20 25 30 35 40 45 15 20 25 30 35 40 45
Time steps Time steps Time steps
(a) 4Balls (b) Curtain (c) 678Balls

LSTM rollout RIMs rollout SOFF (2 Sch) rollout SOFF (4 Sch) rollout SOFF (6 Sch) rollout

(d) Comparison with RIMs and LSTM (sch = schemata)

Figure 5: Bouncing ball motion: Prediction error comparison of SCOFF, LSTM, and RIMs. Given
10 frames of ground truth, the model predicts the rollout over the next 35 steps. SCOFF performs
better than LSTM and RIMs in accurately predicting the dynamics. The advantage of SCOFF is
amplified as the number of balls increases—(a) versus (c).

Object Files and Schemata: factorizing declarative and
procedural knowledge in dynamical systems

Lamb, Goyal, Blundell, Mozer, Beaudoin, Levine & Bengio,
submitted, 2020
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Learning to Combine Top-Down and
Bottom-Up Signals

Sarthak Mittal, Alex Lamb, Anirudh Goyal, Vikram Voleti, Murray Shanahan, Guillaume Lajoie, Michael
Mozer, Yoshua Bengio, ICML 2020

Properly combining the contextual information and prior with the bottom-up signal
can be useful even at the lower levels of perceptual processing and changes the
lower-level interpretations.
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Learning

‘ Activated Module

to -
Combine N
Z Op — @ Null
()
Layers h
O w n —> Recurrent Connection
a n d Attention-Based Bottom-Up Retrieval
(only strong connections shown)
B O t tO m — foput Attention-Based Top-Down Retrieval
(only strong connections shown)

Attention-Based Communication
Between Modules

Up
Signals

ICML'2020

¢

Figure 2: Proposed architecture. Bidirectional connections to provide

Time

top-down information (red arrows); Sparse Activation of modules (dark blue -
active); Communication within each layer (green arrows)




Learning to Combine Top-Down and Bottom-Up Signals

Algorithm
. LSTM
. RIMs
. BRIMs

Curtain 4 Balls
Task

3.0

BCE Loss
ol -b N N
o (4] o o

o
n

o
o

Figure 12: Performance on Bouncing
Balls task. The task has multiple balls
bouncing around so each ball has its
own independent dynamics. They
react only through collisions. Curtain
provides examples with occlusion.
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Use of Key-Value attention to integrate top-down and bottom-up
information in context-dependent and dynamic way and to infer a sparse
relationship between the incoming observations and the set-structured state
representation.



Learning to Combine Top-Down and Bottom-Up Signals

Algorithm Properties 19x 19 24x24 32x32
LSTM - 54.4 44 .0 32.2
LSTM tH 57.0 46.8 33.2
LSTM H+B 56.5 52.2 42.1
LSTM H+A 56.7 51.5 40.0
LSTM H+A+B 59.9 54.6 43.0

RMC A 499 443 31.3

RIMs A+M 56.9 51.4 40.1
Hierarchical RIMs H+A+M 57.2 54.6 46.8
MLD-RIMs H+A+M 56.8 53.1 44.5
BRIMs (ours) H+A+B+M 60.1 57.7 52.2

Figure 10: We train sequentia

a time. The models are trainec

models on CIFAR10 where they see one pixel at
on 16 X 16 resolution and then evaluated on

19 x 19, 24 x 24 and 32 x 32 resolutions. We see that BRIMs generalize very
well across changes in sequence length.



Learning to Combine Top-Down and Bottom-Up Signals

Environment LSTM RIMs BRIMs (ours)
Alien 1612 = 44 2152 = 81 4102 = 400
Amidar 1000 T 58 1800 T 43 2454 T 100
Assault 4000 = 213 5400 = 312 5700 = 320
Asterix 3090 == 420 21040 == 548 30700 == 3200
Asteroids 1611 = 200 3801 T 89 2000 = 300
Atlantis 3.28M = 0.20M 3ISM = 0.12M 3.9M T 0.05M
BankHeist 1153 = 23 1195 = 4 1155 = 20
BattleZone | 21000 == 232 22000 = 324 25000 <+ 414
BeamRider 698 = 100 5320 = 300 4000 = 323
MsPacMan 4598 T 100 3920 T 500 5900 T 1000

Figure 11: We replace LSTM with BRIMs in an RL agent trained with PPO
.o. and show that BRIMs outperform their competitors on a set of randomly

Y
—e [
(e

*s” chosen Atari games.
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Noisy Inputs: more attention to top-down signals

0.4375

0.4350 - 0.535 7

0.4325 A 0.530 -
o 0.525 -
p

£ 0.520 -

3 0.515 A

Input Attention
o o o o
RS 4 + &
N N N W
~N w ~ o
w o w o

—~
= 0.510 -

e
Top-Down Attention
=
(o]

0.505 A
0.4200 -

0.500 -
0.4175 A

0.495 -

0 200 400 6500 800 1000 0 200 400 500 800 1000 0 200 400 500 800 1000
Amount of Noise Amount of Noise Amount of Noise

Figure 14: Attention given to input (left), zero vector (middle), and top-level
(right), as a function of noise injected into CIFAR images. We see that as the
amount of noise increases in the image, the model's reliance on higher level
information increases. This is in line with our hypothesis that top-down
‘modulation should be queried more in case of uncertainty.



SOME SYSTEM 2 INDUCTIVE PRIORS
all inspired by human cognition

* Shared 'rules’ across instance tuples (as arguments), requiring variables & indirection
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SCHEMAS AND SLOTS

Separate values (slots) from rules (schemas)

Ol?ject Schema 1 | Schema 2 | Schema 3 Figure 1° As a motivat-
Files Pacman Normal Scared .
Ghost Ghost ing example, we show
Top Frame two successive frames
A v of the game PacMan
B v and show how procedu-
g \‘; ral and declarative knowl-
B v edge must be dynamically
Bottom Frame factorized. The “B” ghost
A v has a persistent object
| : > ](3: i file (vyith 1ts loqation and
Object Object Object Object D v VG]OClty), yet 1ts proce-
file file file E 7 dure mostly depends on
: : , : whether it 1s 1n 1ts scared

or normal routine.

Figure 2: Our SCOFF model.
Schemata are sets of param-
eters that specify the dynam-
ics of objects. Object files
are active modules that main-
tain the time-varying state of
an object, seek information
from the input, and select
schemata for updating.

Object Files and Schemata: factorizing declarative and
procedural knowledge in dynamical systems

Goyal, Lamb, Gampa, Blundell, Mozer, Beaudoin, Levine &
Bengio, submitted, 2020
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SOME SYSTEM 2 INDUCTIVE PRIORS
all inspired by human cognition

* Meaning (e.g. causal graph or an encoder) is stable & robust wrt changes in
distribution

EaMila



Fast and slow weights

. Slow weights
- Ground-truth causal graph

R=—

{:XNDint [lOg

. Fast weights
- Adapt to local (intervention) changes

™
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Meta-Learning =
Multiple Time Scales of Learning

RBG input
frames
| Individual Episodes o Individual Episodes
Meta Episode Meta Episode
ATTONATTONATT ONATT AT NS NN ATTONATTONATT NAT N N N N
.................................................................. —_— e e——
% 2 @ S
Fast Inner Updates c Fast Inner Updates =
L T L ©
.................................................................. =3 o
- -
- - - - - -
Slow Outer Updates Slow Outer Updates
VATAY

0:0
\d N7
| >
o | e
DN P
- 9
—

®
o
~

--------------------------------------------------------------------

. Inner loop for fast
> learning of module
: parameters

....................................................................

. Outer loop for meta
» . learning of attention
i parameters

....................................................................




return

Meta-Attention Networks

GoTolLocal
Mean Return
1.0
0.8 A
0.6
0.4
0.2
— meta
0.0 A —— vanilla
— modular
_0.2 1 1 1 1
0 1 2 4
frames le6
PutNear-6x6-N2
Mean Return
0.8
0.6
0.4
0.2
— meta
0.0 — modular
- vanilla
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
frames leb

return

1.0

0.8 A

0.6 A

return

0.2 1

0.0 A

1.0

0.8 A

0.6 A

0.4 A

0.2

0.0 -

—0.2 -

DoorKey-6x6

Mean Return

0.4 A

— meta
— modular
- vanilla
0 1 2 3 4 5 6
frames 1e5
FourRoomsEnvS13
Mean Return
X
- v
— meta
—— modular
- vanilla
0.0 0.2 0.4 0.6 0.8 1.0 1.2
frames le6

RIMs +
meta-
learning

Fast learning:
modules

Slow learning:
attention
mechanism

Experiments on
Baby Al tasks
(Kanika Madan
et al 2020,
submitted)



SOME SYSTEM 2 INDUCTIVE PRIORS
all inspired by human cognition

* Credit assighment is only over short causal chains



Sparse Attentive Backtracking

Rosemary Ke, Anirudh Goyal, Olexa Bilaniuk, Jonathan Binas, Mike Mozer, Yoshua Bengio,

NeurlPS 2018

The attention mechanism of the associative memory picks up past memories
which match (associate with) the current state, maybe be an alternative to BPTT for learning
very long-term dependencies.

forward backward
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Causal reasoning over events factor gsraph

®* Node of graph = event at particular time, involving a small set of variables
® Factor = causal mechanism

* Directed edges: from past to future, causal direction
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LEARNING TO REASON

. Reasoning and planning is inference and is inherently
computationally expensive

. Brains do not use exhaustive search but instead generate
good candidates

. Conscious processing seems involved in evaluating them for
global coherence across the brain’s modules

. Attention mechanisms are part of the reasoning policy,
converting declarative knowledge into selective
computations for inference and decision-making

—e. \u [}
o Mila
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CONTRAST WITH THE SYMBOLIC Al PROGRAM

Avoid pitfalls of classical Al rule-based symbol-manipulation
* Need efficient large-scale learning

* Need semantic grounding in system 1 (implicit knowledge)
* Need distributed representations for generalization

* Need efficient = trained search (also system 1)

* Need uncertainty handling

But want

* Systematic generalization
* Factorizing knowledge in small exchangeable pieces

 Manipulating variables, instances, references & indirection
'°:'2i§->M||a 68



language

reasoning

ckmsciousness

\

indirection &

system 2

systematic

variables

meta-learning

/ generalization

modularity/

compositionality

causality

agency

out-of-distribution
generalization

\

non-stationarity

—__|multi-agent

interactions

CONSCIOUSNESS PRIORS

Sparse factor graph in space of high-level

semantic variables
Semantic variables are causal: agents,

intentions, controllable objects

Simple mapping between high-level semantic
variables / thoughts and words / sentences
Shared ’rules’ across instance tuples (as
arguments), w/ variables & indirection

Distributional changes due to localized causal

interventions (in semantic space)
Meaning (e.g. grounded by an encoder) 1s stable
& robust wrt changes 1n distribution

Credit assignment 1s only over short causal
chains
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ML going out of Labs, into society

ML is not just a research question anymore

e ML-based products are being designed and deployed
=2 new responsibility for Al scientists and engineers

- wisdom race, as power of technology increases

fihifes

Impact of technology on Society
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