
TOWARDS CAUSAL REPRESENTATION
LEARNING:

AN AI & DEEP LEARNING PERSPECTIVE
ON CAUSALITY

YOSHUA BENGIO

30 November 2020
Mila Causality Inference Lectures

• AI systems which actually understand the variables they manipulate
(including language, perception and action)

• What does ’understanding’ mean?

• They capture causality

• They capture how the world works
• They understand abstract actions and how use them to control
• They can reason and plan, even in novel scenarios
• They can explain what happened (inference, credit assignment)
• They can generalize out-of-distribution

WHAT IS MISSING TOWARDS HUMAN-LEVEL AI?

2

Missing from Current ML:
Understanding & Generalization
Beyond the Training Distribution

• Learning theory only deals with generalization
within the same distribution

• Models learn but do not generalize well (or have
high sample complexity when adapting) to
modified distributions, non-stationarities, etc.

Missing from Current ML:
Understanding & Generalization
Beyond the Training Distribution

• If not iid, need alternative assumptions,
otherwise no reason to expect generalization

• How do distributions change?

• What knowledge can be re-used?

Different forms of compositionality
each with different exponential advantages

• Distributed representations
(Pascanu et al ICLR 2014)

COMPOSITIONALITY HELPS IID AND OOD GENERALIZATION

5

(Lee, Grosse, Ranganath &
Ng, ICML 2009)

• Composition of layers in deep nets
(Montufar et al NeurIPS 2014)

• Systematic generalization in language,
analogies, abstract reasoning? TBD

SYSTEMATIC GENERALIZATION

• Studied in linguistics

• Dynamically recombine existing concepts

(Lake & Baroni 2017)
(Bahdanau et al & Courville ICLR 2019)
CLOSURE: (Bahdanau et al & Courville arXiv:1912.05783) on CLEVR

6

RESEARCH ARTICLES
◥

COGNITIVE SCIENCE

Human-level concept learning
through probabilistic
program induction
Brenden M. Lake,1* Ruslan Salakhutdinov,2 Joshua B. Tenenbaum3

People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

D
espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural andman-

made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

new concept, and even children canmake mean-
ingful generalizations via “one-shot learning”
(1–3). In contrast, many of the leading approaches
inmachine learning are also themost data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4–9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (11), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of

RESEARCH

1332 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

1Center for Data Science, New York University, 726
Broadway, New York, NY 10003, USA. 2Department of
Computer Science and Department of Statistics, University
of Toronto, 6 King’s College Road, Toronto, ON M5S 3G4,
Canada. 3Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, MA 02139, USA.
*Corresponding author. E-mail: brenden@nyu.edu

Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]

on Novem
ber 13, 2018

http://science.sciencem

ag.org/
Downloaded from

(Lake et al 2015)

• Even when new combinations have 0 probability
under training distribution

• E.g. Science fiction scenarios

• E.g. Driving in an unknown city

• Not very successful with current DL, which can
”overfit” the training distribution

Faced with novel or rare situations, humans call upon conscious attention to combine
on-the-fly the appropriate pieces of knowledge, to reason with them and imagine
solutions.

à we do not follow our habitual routines, we think hard to solve problems.

7

CONSCIOUS PROCESSING HELPS HUMANS DEAL WITH OOD SETTINGS

AGENT LEARNING NEEDS OOD
GENERALIZATION

Agents face non-stationarities

Multi-agent systems: many changes in distribution
Ood generalization needed for continual learning

8

Changes in distribution due to

• their actions

• ESPECIALLY:

• actions of other agents

• different places, times, sensors,
actuators, goals, policies, etc.

9

SYSTEM 1 VS. SYSTEM 2 COGNITION
2 systems (and categories of cognitive tasks):

System 1
• Intuitive, fast, UNCONSCIOUS, 1-step

parallel, non-linguistic, habitual
• Implicit knowledge
• Current DL

System 2
• Slow, logical, sequential, CONSCIOUS,

linguistic, algorithmic, planning, reasoning
• Explicit knowledge
• DL 2.0

Manipulates high-level /
semantic concepts, which can

be recombined
combinatorially

IMPLICIT VS VERBALIZABLE KNOWLEDGE: UNDERLYING ASSUMPTIONS
BEHIND VERBALIZABLE KNOWLEDGE

10

• Most knowledge in our brain is implicit and not verbalizable (hence the explainability
challenge, even for humans)

• Some of our knowledge is verbalizable and we can reason and plan explicitly with it

• The concepts manipulated in this way are those we can name with language

• Properties of joint distribution between these concepts and their change over time?

è clarify these assumptions as priors to be able to embed them in ML architectures and
training frameworks which bridge perception and reasoning

Independent Mechanisms
• Knowledge can be decomposed in informationally independent pieces (modules, mechanisms)

• Any causal intervention normally affects just one such mechanism

• Any other factorization would not have that property

• Mechanisms can be used in many instances (e.g. same law of gravity)

Scholkopf et al 2012

• Sparse factor graph in space of high-level semantic variables

• Semantic variables are causal: agents, intentions, controllable objects

• Distributional changes due to localized causal interventions (in semantic space)

• Simple mapping between high-level semantic variables / thoughts and words / sentences

• Shared ’generic rules’ across instances (as arguments), requiring variables & indirection

• Meaning (e.g. grounded by an encoder) is stable & robust wrt changes in distribution

• Credit assignment is only over short causal chains

SOME SYSTEM 2 INDUCTIVE PRIORS
all inspired by human cognition

12

• Sparse factor graph in space of high-level semantic variables

• Semantic variables are causal: agents, intentions, controllable objects

• Distributional changes due to localized causal interventions (in semantic space)

• Simple mapping between high-level semantic variables / thoughts and words / sentences

• Shared ’rules’ across instance tuples (as arguments), requiring variables & indirection

• Meaning (e.g. grounded by an encoder) is stable & robust wrt changes in distribution

• Credit assignment is only over short causal chains

SOME SYSTEM 2 INDUCTIVE PRIORS
all inspired by human cognition

13

CONSCIOUSNESS PRIOR
è SPARSE FACTOR GRAPH

• Property of high-level variables which we manipulate
with language: we can
predict some given very few others
• E.g. "if I drop the ball, it will fall on the ground”

Bengio 2017, arXiv:1709.08568

• Disentangled factors marginally independent,
e.g. ball & hand

• Prior: sparse factor graph joint distribution between
high-level variables

• Inference involves few variables at a time, selected by
attention mechanism and memory retrieval

6=

<latexit sha1_base64="icU9dXW1HlT8qkmYHCE+6odgRGE=">AAAD9HicjVPLbtNQED2peZTwamHJxiJFYkPkVJFgWcGGZZFIW6mpkO3eJFZsX+NHoLL6C2xhwQ6x5X/4A/gLzkxvItoK0TuyPffMnHNnxnZUpElVB8HPzpp37fqNm+u3urfv3L13f2PzwV5lmzI2o9imtjyIwsqkSW5GdVKn5qAoTZhFqdmP5q8kvr8wZZXY/G19UpijLJzmySSJw1qgcW7ev9voBf1Al3/ZGTinB7d27WYnwxjHsIjRIINBjpp+ihAV7RADBCiIHaElVtJLNG5wii65DbMMM0Kic96n3B06NOdeNCtlxzwl5VWS6eMJOZZ5JX05zdd4o8qC/ku7VU2p7YTPyGllRGvMiP6Pt8y8Kk96qTHBC+0hYU+FItJd7FQanYpU7v/VVU2Fgpj4x4yX9GNlLufsK6fS3mW2ocZ/aaagso9dboPfWqXUmRP7oPPKtIOc+i1xOa8g2+Kje8qbs6xSosteRT1VZLFSlypbavu0MRkTWrKKpOpLTXN6BTNm1BJ0SrzV/UQnsIUebYtIrO/QdzY+V89ZVPqwF3Tmel6Obc08JVIxml2B8WzFWVqXf8Pg4rd/2dnb7g+G/eGbYW/npfsv1vEIj/GU3/5z7OA1djHi+TN8wmd88RbeV++b9/0sda3jOA9xbnk//gDbcctY</latexit>

• Sparse factor graph in space of high-level semantic variables

• Semantic variables are causal: agents, intentions, controllable objects

• Distributional changes due to localized causal interventions (in semantic space)

• Simple mapping between high-level semantic variables / thoughts and words / sentences

• Shared ’rules’ across instance tuples (as arguments), requiring variables & indirection

• Meaning (e.g. grounded by an encoder) is stable & robust wrt changes in distribution

• Credit assignment is only over short causal chains

SOME SYSTEM 2 INDUCTIVE PRIORS
all inspired by human cognition

15

• Physics: position and momentum of every particle

• Computationally intractable

• Scientists (and other humans) invent higher-level abstraction which make
it easier to model causal structure of the world

• Can ML also do it?
• Human brains are complex machines
• Hence it is feasible

WHAT CAUSAL VARIABLES?

16

AGENCY TO GUIDE
REPRESENTATION LEARNING
& DISENTANGLING

Some factors (e.g. objects) correspond to ‘independently controllable’
aspects of the world
• Maximize mutual information between intentions (goal-conditioned policies) and

changes in the state (trajectories), conditioned on the current state.

Can only be discovered by acting in the world
• Control linked to notion of objects & agents

• Causal but agent-specific & subjective: affordances

(E. Bengio et al, 2017; V. Thomas et al, 2017; more recently see Kim et al ICML 2019)

FROM PERCEPTION TO MODELLING THE WORLD AT THE SEMANTIC-LEVEL

What are the right representations? Causal variables explaining the data

How to discover them (as a function of observed data)?

How to discover their causal relationship, the causal graph?

How are actions corresponding to causal interventions?

How is raw sensory data mapped to high-level causal variables
and how do high-level causal variables turn into low-level
actions and partial observations?

Raw input/output

ENCODER / DECODER

Causal model

• Sparse factor graph in space of high-level semantic variables

• Semantic variables are causal: agents, intentions, controllable objects

• Distributional changes due to localized causal interventions (in semantic space)

• Simple mapping between high-level semantic variables / thoughts and words / sentences

• Shared ’rules’ across instance tuples (as arguments), requiring variables & indirection

• Meaning (e.g. grounded by an encoder) is stable & robust wrt changes in distribution

• Credit assignment is only over short causal chains

SOME SYSTEM 2 INDUCTIVE PRIORS
all inspired by human cognition

19

Change may be drastic in pixel
space but tiny in semantic
space of causal variables

20

INDEPENDENT MECHANISMS: SPARSE CHANGE IN ABSTRACT LATENT SPACE

ENCODER

Localized
change in
distribution

ENCODER

Raw input Raw input

Sparse joint in abstract space

WHAT CAUSES CHANGES IN DISTRIBUTION?

Hypothesis to replace iid assumption:
changes = consequence of an intervention on few causes or mechanisms

Underlying physics: actions are localized
in space and time.

21

Change due
to intervention

Extends the hypothesis of (informationally) Independent Mechanisms (Scholkopf et al 2012)

è local inference or adaptation in the right model

COUNTING ARGUMENT:
LOCALIZED CHANGE→OOD TRANSFER

Good representation of variables and mechanisms + localized change hypothesis

Change due
to intervention

22

→ few bits need to be accounted for (by inference or adaptation)
→ few observations (of modified distribution) are required

→ good ood generalization/fast transfer/small ood sample complexity

CAUSAL INDUCTION FROM INTERVENTION DATA
Recovery of causal model from data

Observational data:
○ Distinguishes causal models only up to Markov equivalence class

Intervention data:
○ What causal induction requires
○ Most work assumes known-intervention data
○ Real world: Other agents or environment can intervene

• Hence, interventions unknown
○ How to handle unknown intervention?

• Infer it

EXAMPLE: DISCOVERING CAUSE AND EFFECT
= HOW TO FACTORIZE A JOINT DISTRIBUTION?

• Learning whether A causes B or vice-versa
• Learning to disentangle (A,B) from observed (X,Y)
• Exploit changes in distribution and speed of

adaptation to guess causal direction

24

ICLR 2020: A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms,
Bengio, Deleu, Rahaman, Ke, Lachapelle, Bilaniuk, Goyal, Pal
ArXiv:1901.10912

BA

X Y

A Meta-Transfer Objective for Learning to
Disentangle Causal Mechanisms

Experimental setup

● Consider two r.v. A and B, where A causes B.

● The correct causal model decomposes as

● Consider two distributions, where only p(A) changes
and p(B | A) remains unchanged (covariate shift).

○ A training distribution
○ A transfer distribution

● If we train a model using data from using the correct
decomposition, then adaptation on is fast because

Wrong knowledge factorization leads to poor transfer

● With the wrong factorization
a change in p(A) influences all the modules.

○ Poor transfer: all the parameters need
to be adapted.

● This is the normal situation with standard
neural networks: every parameter
participates to every relationship between all
the variables.

● This causes catastrophic forgetting, poor
transfer, difficulties with continual
learning or domain adaptation, etc.

● Use the speed of adaptation as a way to find
the correct factorization.

Correct causal structure:

• Faster online adaptation to modified distribution = lower NLL regret
• Effect of the correct factorization is most evident with only a few

samples from modified distribution

The Meta-Transfer Objective

● Smooth parametrization of the causal structure

○ Structural (meta-)parameter
○ If , then the correct structure is recovered.

● Quantify the speed of adaptation with the online likelihood

○ Adaptation with gradient ascent
○ Dobs is a large training dataset sampled from
○ Dint is a small transfer dataset sampled from

The Meta-Transfer Objective gradient

Can be optimized wrt. with gradient descent

Experimental results - Discrete variables

Tabular representation of marginals and
conditionals of bivariate model

Each conditional is represented by a one-hidden-layer
MLP with one-hot inputs, softmax outputs

+ Experiments on Linear Gaussian & Continuous multimodal variables (see Appendix).

Disentangling the causes

● Realistic settings: causal variables are not directly observed.

● Need to learn an encoder which maps raw data to causal space.

● Consider both the encoder parameters and the causal graph structural parameters as meta-
parameters trained together wrt proposed meta-transfer objective.

• Simplest possible scenario: linear mixing (rotating decoder) and unmixing (rotating decoder)

Experimental results - Disentangling the causes

● Recovers the correct encoder parameter (left), up to permutation.

● Simultaneously recovers causal direction (right).

DISCOVERING LARGER CAUSAL GRAPHS

Learning Neural Causal Models from Unknown Interventions

32

Ke, Bilaniuk, Goyal, Bauer, Scholkopf, Larochelle, Pal & Bengio 2019 arXiv:1910.01075

• Learning small causal graphs, avoid exponential
explosion of # of graphs by parametrizing
factorized distribution over graphs

• With enough observations of changes in
distribution: perfect recovery of the causal
graph without knowing the intervention;
converges faster on sparser graphs

• Inference over the intervention:
faster causal discovery

Use neural networks to present/ learn causal models
Parameters:

○ Structural parameters
○ Functional parameters

Method overview:
Iterate:

1. Phase 1: Graph fitting on observational data
2. Phase 2: Graph scoring on interventional data
3. Phase 3: Credit assignment to structural parameters

HOW TO FACTORIZE AND LEARN THE BELIEF DISTRIBUTION OVER
GRAPHS Learning Neural Causal Models from Unknown

Interventions
Dependency Structure Discovery from
Interventions

Ke et al 2019 arXiv:1910.01075

Ke et al 2020, submitted

MODEL ARCHITECTURE

Use N neural networks to represent causal graph with N variables

Each neural network models:
○ Who are the direct causal parents

■ Structural parameters
○ What is the relationship between them

■ Functional parameters

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

Institut
des algorithmes
d’apprentissage

de Montréal

CONVERGENCE RATE FOR DIFFERENT GRAPHS

Institut
des algorithmes
d’apprentissage

de Montréal

DENSER GRAPHS ARE MORE CHALLENGING

Institut
des algorithmes
d’apprentissage

de Montréal

PARTIAL GRAPH RECOVERY

Alarm [1].

[1]. I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM Monitoring System: A Case Study with Two Probabilistic
Inference Techniques for Belief Networks. In Proceedings of the 2nd European Conference on Artificial Intelligence in Medicine, pages 247-256.
Springer-Verlag, 1989.
[2]. Preliminary model for barley developed under the project: "Production of beer from Danish malting barley grown without the use of pesticides"
by Kristian Kristensen , Ilse A. Rasmussen and others.

Barclay [2].

Institut
des algorithmes
d’apprentissage

de Montréal

ABLATIONS
Generalizing to previously unseen interventions: Importance of predicting the intervention:

Importance of acyclic (LDAG) regularizer:

OBSERVING OTHER AGENTS

• Can infants figure out causal structure in spite of being almost passive observers?

• Yes, if they exploit and infer the interventions made by other agents

• Our approach does not require the learner to know what the action/intervention
was (but it could do inference over interventions)

• But more efficient learning if you can experiment and thus test hypotheses about
cause & effect

• Sparse factor graph in space of high-level semantic variables

• Semantic variables are causal: agents, intentions, controllable objects

• Distributional changes due to localized causal interventions (in semantic space)

• Simple mapping between high-level semantic variables / thoughts and words / sentences

• Shared ’rules’ across instance tuples (as arguments), requiring variables & indirection

• Meaning (e.g. grounded by an encoder) is stable & robust wrt changes in distribution

• Credit assignment is only over short causal chains

SOME SYSTEM 2 INDUCTIVE PRIORS
all inspired by human cognition

42

THOUGHTS, CONSCIOUSNESS, LANGUAGE

• Consciousness: from humans reporting

• High-level representations language

43

,
<latexit sha1_base64="vV9KmI3DSqORXXjKQpnPOIDgOOM=">AAAEAXicjVNNb9NAEJ3UfJTw0RSOXCxSJC5ETqn4uFVw4cChSKSt1FSV7a6TVWyvtV63VFZP/AyucOCGuPJL+AfwL3gz3USUCtEdJZ59M+/tzNibVLmuXRT96CwFV65eu758o3vz1u07K73Vu9u1aWyqRqnJjd1N4lrlulQjp12udiur4iLJ1U4ye8XxnSNla23Kd+6kUvtFPCl1ptPYATrorYzfqMxZPZm62FpzfNDrR4NIVnjRGXqnT35tmdVOQWM6JEMpNVSQopIc/JxiqmF7NKSIKmD71AKz8LTEFZ1SF9wGWQoZMdAZ/ifY7Xm0xJ41a2GnOCXHz4IZ0kNwDPIsfD4tlHgjyoz+S7sVTa7tBM/EaxVAHU2B/o83z7wsj3txlNFz6UGjp0oQ7i71Ko1MhSsP/+jKQaECxv4h4hZ+Ksz5nEPh1NI7zzaW+E/JZJT3qc9t6JdUyXWWwI5lXoV0UEK/Bc7nVWAbeu+f/OYMquTovFdWzwU5WqhzlS20Q9gYjAymF5FcfK5pBq9CxhRajE6At7LPZAJr1IetAUnlHYbexufqOYtyH+YvnZmcV9K6ZJ4CqREtLsF4vODMrSu34QWvp4tv/6KzvT4YPhlsvN3ob77092KZ7tMDeoRv/xlt0mvaopHcj4/0iT4HH4Ivwdfg21nqUsdz7tG5FXz/DbGO0Lg=</latexit>

• High-level concepts: meaning anchored in low-level
perception and action à tie system 1 & 2

• Grounded high-level concepts

à better natural language understanding

• Grounded language learning e.g.
BabyAI: (Chevalier-Boisvert and al ICLR 2019)

CORE INGREDIENT FOR CONSCIOUS PROCESSING:
ATTENTION

• Focus on a one or a few elements at a
time

44

• Content-based soft attention is convenient,
can backprop to learn where to attend

• Attention is an internal action, needs a
learned attention policy (Egger et al 2019)

• Operating on unordered SETS of (key, value) pairs

• SOTA in NLP

(Bahdanau et al ICLR 2015)

Attention

FROM ATTENTION TO INDIRECTION

Attention

• Attention = dynamic connection

45

• Receiver gets the selected value

• Value of what? From where?

à Also send ‘name’ (or key) of sender

• Keep track of 'named’ objects: indirection

• Manipulate sets of objects (transformers)

P.S. contrary to convnets doing object recognition, sequential tasks involving memory and attention typically involve a
more difficult optimization problem, and fighting underfitting (including the issue of long-term dependencies)

RIMS: MODULARIZE COMPUTATION AND OPERATE ON SETS OF
NAMED AND TYPED OBJECTS

Recurrent Independent Mechanisms

46

Goyal et al 2019, arXiv:1909.10893

Builds on rich recent litterature on object-centric representations (mostly for images)

Multiple recurrent sparsely interacting
modules, each with their own
dynamics, with object (key/value pairs)
input/outputs selected by multi-head
attention

Results: better ood generalization

Ongoing work: hierarchy, top-down
broadcasting, spatial layout of
modules

RESULTS WITH RECURRENT INDEPENDENT MECHANISMS

• RIMs drop-in replacement for LSTMs in PPO baseline over all Atari games.
• Above 0 (horizontal axis) = improvement over LSTM.

47

FROM ATTENTION TO CONSCIOUSNESS

C-word not taboo anymore in cognitive neuroscience

Global Workspace Theory
(Baars 1988++, Dehaene 2003++)

• Bottleneck of conscious processing

• WHY A BOTTLENECK?

• Selected item is broadcast, stored in short-term
memory, conditions perception and action

• System 2-like sequential processing, conscious
reasoning & planning & imagination

• Can only run 1 simulation at a time, unlike a movie,
only few abstract concepts involved at each step

48

Modules + Global Workspace
Adding a
shared global
workspace
similar to the
GWT greatly
improves
RIMs

1. Parallel, competing specialists 2. Write to shared workspace 3. Broadcast workspace contents

Figure 1: Step 1: an ensemble of specialists doing their own default processing; at a particular
time-step, depending upon the input, a subset of the specialists becomes active. Step 2: the active
specialists get to write information in a shared global workspace. Step 3: the contents of the
workspace are broadcast to all specialists.

Distributed specialists. From a computational perspective, articulated multi-component archi-36

tectures composed of sparsely interacting specialists show desirable scaling properties (e.g., more37

specialists can seamlessly be added), increased robustness (the system can tolerate the removal of38

individual specialists), and efficiency (information is processed predominantly locally, reducing the39

cost of communication between specialists). However, modularization also requires mechanisms to40

establish sharing of compatible representations across specialists. While portions of a task might be41

solved by independent specialists, synchronization is critical particularly when there are statistical,42

functional, or causal dependencies among the specialists.43

As a concrete illustration, consider the task of driving a car in terms of specialists. One specialist44

might monitor the position of the car with respect to lines on the road, and another specialist might45

adjust the steering direction based on the perceptual data. In addition, there might be specialists46

which provide alerts when certain events occur, such as loud sounds, reaching a critical intersection47

on a route, or coming into close proximity to the car in front.48

Coherence through a shared workspace. In cognitive science, the Global Workspace Theory49

(GWT) [Baars, 1993] suggests an architecture allowing specialist components to interact. The key50

claim of GWT is the existence of a shared representation—sometimes called a blackboard, sometimes51

a workspace—that can be modified by any specialist and that is broadcast to all specialists, along with52

the notion that write access is limited to maintain coherence. Our interpretation of this restriction53

on write access is that it stems from an assumption on the form of the joint distribution between54

high-level concepts. GWT makes a claim, not particularly relevant to our work, that the workspace is55

associated with the conscious contents of cognition. In this paper, we explore a communication and56

coordination scheme similar to the one proposed by GWT for a modular neural net.57

In terms of our driving example, the workspace could be used to override default behaviors by giving58

high priority to specialists who provide alerts of various sorts (loud sounds, presence of a child in59

the street), allowing specialists which respond to such alerts to take control of behavior over default60

driving routines. This scenario implies that prioritization of signals in a shared workspace is critical.61

A shared communication channel necessitates common representations. For a multitude of62

specialists to cooperate, a common language is necessary. For example, in the driving scenario,63

alerts may come from auditory or visual processing specialists, but regardless of the source, a signal64

for danger must be placed in the workspace to override default behavior, whether that behavior is65

controlled by a radio-tuning specialist or a steering specialist. Although specialists can be pre-wired66

to have compatible communication interfaces, we will model an architecture in which an ensemble of67

specialists is trained in coordination, which should lead to a shared language [Colagrosso and Mozer,68

2005]. Internally, individual specialists can use whatever form of representations that serves them, but69

their inputs and outputs require alignment with other specialists in order to synchronize. For example,70

an unusual event such as a rough thud under the wheels might not have been previously experienced,71

2

Table 2: FourRoom Navigation Task: Success Rate of the
proposed method vs. the baselines on the FourRoom naviga-
tion environment illustrated on the right, with the agent in
red, its field of visibility greyed out, and the object to get in
green.

RIMs RMC LSTM Ours

0.72 ± 0.02 0.67 ± 0.05 0.62 ± 0.02 0.96 ± 0.02

4.3 BabyAI: FourRoom Navigation Task246

We evaluate the proposed method on the classical four-room reinforcement learning environment as247

shown in fig. 4.3 from the MiniGrid environment Chevalier-Boisvert et al. [2018]. The agent must248

navigate in a maze composed of four rooms interconnected by 4 gaps in the walls. To obtain a reward,249

the agent must reach the green goal square. Both the agent and the goal square are randomly placed250

in any of the four rooms. This task is a bit difficult to solve without requiring memory, due to (1)251

the partial observability of the environment and (2) the sparsity of the reward, given that the agent252

receives a reward only after reaching the goal, and (3) environments are procedurally generated.253

Table 4.3 shows the success rate of the proposed method as well as the baselines on the FourRooms254

environment. Success is measured by the percent of time the agent can find the goal in an unseen255

maze. Table 4.3 also includes a comparison with the other baselines (LSTM, RIMs [Goyal et al.,256

2019], RMC [Santoro et al., 2018]). As is evident, the proposed method successfully solves the task257

much better. For more details about the environment and the reinforcement learning setup, we ask258

the reader to refer to appendix, section D.259

4.4 Synthetic Experiments260 Table 3: Results on Memorization Task: Here we eval-
uate the proposed method on the standard memorization
tasks. We show that the proposed model matches the
performance of state of the art models on these standard
memorization tasks.

Task LSTM LSTM+SALU Ours

Double Copy 62% 62% 99%
Priority Sort 75% 99% 95%

We further evaluated these models261

on two standard memorization tasks:262

double-copy and priority sort. We263

compare against two baseline mod-264

els: a vanilla LSTM model and a265

memory-augmented model with the266

soft-attention look-up table as mem-267

ory (LSTM+SALU) [Munkhdalai et al.,268

2019]. As shown in Table 3, the pro-269

posed architecture quickly solves the double-copy task with input length 50. On the priority sort270

problem, the LSTM+SALU model demonstrated the strongest result, but the difference between the271

proposed method and the LSTM + SALU model is very small. For more details, we ask the reader to272

refer to appendix section B.273

5 Conclusion274

We have proposed a shared workspace model to establish coherence and coordination among modular275

specialists. The proposed architecture combines several key properties: knowledge and expertise276

is divided among specialists, they compete to post new contents to the workspace, and after being277

updated, the shared workspace is accessible to all specialists for their own updates. All communication278

occurs through key-value attention, which ensures that the specialists are interchangeable, and that279

any specialist can pass information to the workspace. Experiments on prediction and reinforcement280

learning tasks highlight the advantages brought by the conjunction of modularity and the shared281

memory.282

8

with GW

without GW

Tracking
bouncing balls
(Goyal et al 2020,
submitted)

Separate values (slots) from rules (schemas)

50

SCHEMAS AND SLOTS

Object Schema 1 Schema 2 Schema 3
Files Pacman Normal Scared

Ghost Ghost
Top Frame

A X
B X
C X
D X
E X

Bottom Frame
A X
B X
C X
D X
E X

Figure 1: As a motivat-
ing example, we show
two successive frames
of the game PacMan
and show how procedu-
ral and declarative knowl-
edge must be dynamically
factorized. The “B” ghost
has a persistent object
file (with its location and
velocity), yet its proce-
dure mostly depends on
whether it is in its scared
or normal routine.

We propose a method of separately representing knowledge about the state of a particular object37

token—the information that is maintained in an object file—and abstract knowledge about the38

dynamics of the object type. We refer to this latter type of knowledge as a schema (plural schemata), a39

term which in the cognitive science literature means a framework for organizing complex knowledge.40

Here, we specifically use schema to refer to procedural knowledge—knowledge about the dynamics41

of state evolution—in contrast to the declarative knowledge in an object frame that describes the states42

themselves (Figure 1). The combination of files and schemata is sufficient to predict future states43

of visual environments, critical for planning and goal-seeking behavior. For the sake of simplifying44

terminology, we will refer to object files as ‘files’.45

Object-oriented programming (OOP) provides a way to think about the relationship between files46

and schemata. In OOP, each object is an instantiation of an object class and it has a self-contained47

collection of variables whose values are specific to that object and methods that operate on all48

instances of the same class. The relation between objects and methods mirrors the relationship49

between our files and schemata. In both OOP and our view of visual cognition, a key principle is50

the encapsulation of knowledge: internal details of objects (files) are hidden from other objects, and51

methods (schemata) are accessible to all and only objects to which they are applicable.52

The modularity of knowledge in OOP supports human programmers in writing code that is readily de-53

bugged, extended, and reused. We conjecture that the corresponding modularity of files and schemata54

will lead to neural network models with more efficient learning and more robust representations.55

Modularity is the guiding principle of the model we propose, which we call SCOFF, an acronym for56

schema / object-file factorization. Like other neural net models with external memory [e.g., 11, 5, 14],57

SCOFF includes a set of slots which are each designed to contain a file (Figure 2). In contrast to most58

previous external memory models, the slots are not passive contents waiting to be read or written by59

an active process, but are dynamic, modular elements that seek information in the environment that60

is relevant to the object they represent, and when critical information is observed, they update their61

states, possibly via information provided by other files. Event-based OOP is a good metaphor for this,62

where external events can trigger the action of objects.63

As Figure 2 suggests, there is a factorization of declarative knowledge—the properties and history64

of an object, as contained in the files—and procedural knowledge—the way that object behave, as65

contained in the schemata. Whereas declarative knowledge can change rapidly, procedural knowledge66

is more stable over time. This factorization allows any schema to be applied to any file, when the file67

deems it appropriate. The model design ensures systematicity in the operation of a schema, regardless68

of the slot to which a file is assigned. Similarly, a file can access any applicable schema regardless69

of which slot it sits in. Furthermore, a schema can be applied to multiple files at once, and multiple70

schemata could be applied to a file (e.g., Figure 1). In OOP, systematicity is similarly achieved by71

virtue of the fact that the same method can be applied to any object instantiation and that multiple72

methods exist which can be applied to an object of the appropriate type.73

Our key contribution is to demonstrate the feasibility and benefit of factorizing declarative knowledge74

(the properties and history of an object) and procedural knowledge (the way objects behave). This75

2

factorization enforces not only an important form of systematicity, but also of exchangeability: the76

model behaves exactly the same regardless of the assignment of schemata to schemata-slots and the77

assignment of objects to file-slots. With this factorization, we find improved accuracy of next-state78

prediction models and improved interpretability of learned parameters.79

2 The schemata / object-file factorization (SCOFF) model80

SCOFF (Figure 2) is an architectural backbone that supports the separation of procedural and declar-81

ative knowledge about dynamical entities (objects) in an input sequence. The input sequence82

{x1, . . . ,xt, . . . ,xT }, indexed by time step t is processed by a CNN to obtain a deep embedding,83

{z1, . . . , zt, . . . , zT }, which then serves as input to a network with nf files and ns schemata.84

Files are active processing components that maintain and update their internal state. Essentially, a file85

is a layer of GRU or LSTM units with three additional bits of machinery, which we now describe.86

1. Our earlier metaphor identifying files in SCOFF with objects in OOP is apropos in the sense87

that files are event driven. The file operates in a temporal loop that continuously awaits88

relevant signals in the input. Relevance is determined by the file’s current state, and its89

determination is based on a special case of a key-value attention mechanism, which we90

describe in detail below. When a file is triggered by an input, the file updates by deciding91

which schema to apply. When it is not triggered, its state remains unchanged for the next92

time step. (The triggering mechanism is thus distinct from input gating in a GRU [3] or93

LSTM unit: it is all-or-none, and it operates holistically on all units in the layer.) At most94

nsel files can thus be activated at each time step, based on a competition between files. The95

competition is necessary to ensure differentiation of the files during training, as we will96

demonstrate shortly.97

2. Triggering causes a file to perform a one-step update of its state layer of GRU or LSTM units,98

conditioned on the input signal received. The weight parameters needed to perform this99

update, which we will denote generically as ✓, are not—as in a standard GRU or LSTM—100

internal to the layer but rather are provided externally. Each schema j is nothing more than a101

set of parameters ✓j which can be plugged into this layer. SCOFF uses a key-value attention102

mechanism to perform soft selection of the appropriate schema (parameters).103

3. Triggered files may also seek information from other files, again using a key-value attention104

mechanism to query each other file, matching its query to keys provided by each other105

file, and soft selecting the best matching files to incorporate the values provided by the106

corresponding files.107

This operation cycle ensures that files can update their state in response to both external input and108

the internal state comprised of all the files contents. This updating is an extra wrapper around the109

ordinary update that takes place in a GRU or LSTM layer. It provides additional flexibility in that110

(1) files may simply remain dormant and fully ignore an input, (2) files can switch their dynamics111

from one input to the next conditioned on their internal state, (3) files are modular in that they do not112

communicate with one another except via state-dependent selective message passing.113

Object
file

Object
file

Object
file

Object
file

Visual
input

Sc
he

m
a

Sc
he

m
a

Sc
he

m
a

SCOFF

Prediction

Figure 2: Our SCOFF model.
Schemata are sets of param-
eters that specify the dynam-
ics of objects. Object files
are active modules that main-
tain the time-varying state of
an object, seek information
from the input, and select
schemata for updating.

3

factorization enforces not only an important form of systematicity, but also of exchangeability: the76

model behaves exactly the same regardless of the assignment of schemata to schemata-slots and the77

assignment of objects to file-slots. With this factorization, we find improved accuracy of next-state78

prediction models and improved interpretability of learned parameters.79

2 The schemata / object-file factorization (SCOFF) model80

SCOFF (Figure 2) is an architectural backbone that supports the separation of procedural and declar-81

ative knowledge about dynamical entities (objects) in an input sequence. The input sequence82

{x1, . . . ,xt, . . . ,xT }, indexed by time step t is processed by a CNN to obtain a deep embedding,83

{z1, . . . , zt, . . . , zT }, which then serves as input to a network with nf files and ns schemata.84

Files are active processing components that maintain and update their internal state. Essentially, a file85

is a layer of GRU or LSTM units with three additional bits of machinery, which we now describe.86

1. Our earlier metaphor identifying files in SCOFF with objects in OOP is apropos in the sense87

that files are event driven. The file operates in a temporal loop that continuously awaits88

relevant signals in the input. Relevance is determined by the file’s current state, and its89

determination is based on a special case of a key-value attention mechanism, which we90

describe in detail below. When a file is triggered by an input, the file updates by deciding91

which schema to apply. When it is not triggered, its state remains unchanged for the next92

time step. (The triggering mechanism is thus distinct from input gating in a GRU [3] or93

LSTM unit: it is all-or-none, and it operates holistically on all units in the layer.) At most94

nsel files can thus be activated at each time step, based on a competition between files. The95

competition is necessary to ensure differentiation of the files during training, as we will96

demonstrate shortly.97

2. Triggering causes a file to perform a one-step update of its state layer of GRU or LSTM units,98

conditioned on the input signal received. The weight parameters needed to perform this99

update, which we will denote generically as ✓, are not—as in a standard GRU or LSTM—100

internal to the layer but rather are provided externally. Each schema j is nothing more than a101

set of parameters ✓j which can be plugged into this layer. SCOFF uses a key-value attention102

mechanism to perform soft selection of the appropriate schema (parameters).103

3. Triggered files may also seek information from other files, again using a key-value attention104

mechanism to query each other file, matching its query to keys provided by each other105

file, and soft selecting the best matching files to incorporate the values provided by the106

corresponding files.107

This operation cycle ensures that files can update their state in response to both external input and108

the internal state comprised of all the files contents. This updating is an extra wrapper around the109

ordinary update that takes place in a GRU or LSTM layer. It provides additional flexibility in that110

(1) files may simply remain dormant and fully ignore an input, (2) files can switch their dynamics111

from one input to the next conditioned on their internal state, (3) files are modular in that they do not112

communicate with one another except via state-dependent selective message passing.113

Object
file

Object
file

Object
file

Object
file

Visual
input

Sc
he

m
a

Sc
he

m
a

Sc
he

m
a

SCOFF

Prediction

Figure 2: Our SCOFF model.
Schemata are sets of param-
eters that specify the dynam-
ics of objects. Object files
are active modules that main-
tain the time-varying state of
an object, seek information
from the input, and select
schemata for updating.

3

Object Files and Schemata: factorizing declarative and
procedural knowledge in dynamical systems
Lamb, Goyal, Blundell, Mozer, Beaudoin, Levine & Bengio,
submitted, 2020

Separate values (slots) from rules (schemas)

51

SCHEMAS AND SLOTS: RESULTS

Object Files and Schemata: factorizing declarative and
procedural knowledge in dynamical systems
Lamb, Goyal, Blundell, Mozer, Beaudoin, Levine & Bengio,
submitted, 2020

(a) (b)

Figure 3: (a) Object Files (nf = 4) vs Schemata (ns = 2) activation for an example of length 8
of the adding task. "Null" refers to the elements other than the operands on which the addition is
to be performed. The figure shows the affinity of each file to use a particular schemata. Each row
corresponds to a particular file, and column represents a particular schemata (dark color shows high
affinity of a file towards a particular schemata). As shown in the figure, the active files trigger Schema
1 when an operand is encountered, and Schema 2 when a "Null" element is encountered. (b) Here,
we have a single object file, and that can follow three different dynamics. We found that our method
is able to learn these 3 different modes once it’s passed an initial phase of uncertainty.

Number of Values LSTM RIMS SCOFF

2 0.8731 0.0007 0.0005
3 1.3017 0.0009 0.0007
4 1.6789 0.0014 0.0013
5 2.0334 0.0045 0.0030
8 4.8872 0.0555 0.0191
9 7.3730 0.1958 0.0379
10 11.3595 0.8904 0.0539

Table 1: Adding Task: Mean test set error on 200 length
sequences with number of numbers to add varying among
{2, 3, 4, 5, 8, 9, 10}. The models are trained to add a mixture
of two and four numbers from sequences of length 50. Figure 4: Object files

and schema binding on
RL task (top), Bouncing
Balls Dataset (bottom).

results and the code in the Supplementary Material, and we do plan to release the code. For more194

details please refer to the appendix section A.195

Baselines: We compare the proposed method with RMC, a memory based relational recurrent196

model with attention between saved memory and hidden states [13]. We also compare the proposed197

method to Recurrent Independent Mechanisms (RIMs), a modular memory based on a single layered198

recurrent model with attention modulated input and communication between modules [4].199

4.2 Different schemata specializing over temporal patterns: Qualitative dynamics200

4.2.1 Adding task201

We analyzed the proposed method on the adding task. This is a standard task for investigating202

recurrent models [7]. The input consists of two co-occuring sequences: 1) N numbers (a0 · · · aN�1)203

sampled independently from U [0, 1], 2) an index i0 in the first half of the sequence, and an index i1204

in the second half of the sequence together encoder as a one hot sequences. The target output is ai0205

+ ai1 . As shown in figure 3 (a), we can clearly observe the factorisation of procedural knowledge206

into two schemata effectively, one schema is triggered when an operand is encountered and the other207

when non-operand is encountered. For more details, we ask the reader to refer to appendix section B.208

6

Experiments on Baby AI RL tasks show that slots
specialize on objects (like a key) and schematas
specialize on procedures (like opening a door) or object
detection (like being triggered when the key is in view).

Learning to Combine Top-Down and
Bottom-Up Signals
Sarthak Mittal, Alex Lamb, Anirudh Goyal, Vikram Voleti, Murray Shanahan, Guillaume Lajoie, Michael
Mozer, Yoshua Bengio, ICML 2020

Properly combining the contextual information and prior with the bottom-up signal
can be useful even at the lower levels of perceptual processing and changes the
lower-level interpretations.

Motivation: Top-Down and Bottom-up Feedback

• The H and the A are visually identical but are perceived

di↵erently.

2

Motivation: Top-Down and Bottom-up Feedback

• Perception involves both stimuli and priors.

• Top-Down: expectations, beliefs about what will be observed

• Bottom-Up: the observed content

Figure 1: The same image can appear as a duck or a rabbit depending on our

prior conception

3

Learning
to
Combine
Top-
Down
and
Bottom-
Up
Signals

Proposed Model: BRIMs

Figure 2: Proposed architecture. Bidirectional connections to provide

top-down information (red arrows); Sparse Activation of modules (dark blue -

active); Communication within each layer (green arrows)

6

ICML’2020

Learning to Combine Top-Down and Bottom-Up SignalsExperiments: Bouncing Balls & Moving MNIST

Figure 12: Performance on Bouncing

Balls task. The task has multiple balls

bouncing around so each ball has its

own independent dynamics. They

react only through collisions. Curtain

provides examples with occlusion.

Figure 13: Performance on

MovingMNIST task. It consists of

MNIST digits bouncing around similar

to the bouncing balls task

21

Use of Key-Value attention to integrate top-down and bottom-up
information in context-dependent and dynamic way and to infer a sparse
relationship between the incoming observations and the set-structured state
representation.

Learning to Combine Top-Down and Bottom-Up Signals
Experiments: sCIFAR10

Figure 10: We train sequential models on CIFAR10 where they see one pixel at

a time. The models are trained on 16⇥ 16 resolution and then evaluated on

19⇥ 19, 24⇥ 24 and 32⇥ 32 resolutions. We see that BRIMs generalize very

well across changes in sequence length.

19

Experiments: Atari

Figure 11: We replace LSTM with BRIMs in an RL agent trained with PPO

and show that BRIMs outperform their competitors on a set of randomly

chosen Atari games.

20

Learning to Combine Top-Down and Bottom-Up Signals

Noisy Inputs: more attention to top-down signals

Qualitative Results

Figure 14: Attention given to input (left), zero vector (middle), and top-level

(right), as a function of noise injected into CIFAR images. We see that as the

amount of noise increases in the image, the model’s reliance on higher level

information increases. This is in line with our hypothesis that top-down

modulation should be queried more in case of uncertainty.

22

• Sparse factor graph in space of high-level semantic variables

• Semantic variables are causal: agents, intentions, controllable objects

• Distributional changes due to localized causal interventions (in semantic space)

• Simple mapping between high-level semantic variables / thoughts and words / sentences

• Shared ’rules’ across instance tuples (as arguments), requiring variables & indirection

• Meaning (e.g. causal graph or an encoder) is stable & robust wrt changes in distribution

• Credit assignment is only over short causal chains

SOME SYSTEM 2 INDUCTIVE PRIORS
all inspired by human cognition

58

Separate values (slots) from rules (schemas)

59

SCHEMAS AND SLOTS

Object Schema 1 Schema 2 Schema 3
Files Pacman Normal Scared

Ghost Ghost
Top Frame

A X
B X
C X
D X
E X

Bottom Frame
A X
B X
C X
D X
E X

Figure 1: As a motivat-
ing example, we show
two successive frames
of the game PacMan
and show how procedu-
ral and declarative knowl-
edge must be dynamically
factorized. The “B” ghost
has a persistent object
file (with its location and
velocity), yet its proce-
dure mostly depends on
whether it is in its scared
or normal routine.

We propose a method of separately representing knowledge about the state of a particular object37

token—the information that is maintained in an object file—and abstract knowledge about the38

dynamics of the object type. We refer to this latter type of knowledge as a schema (plural schemata), a39

term which in the cognitive science literature means a framework for organizing complex knowledge.40

Here, we specifically use schema to refer to procedural knowledge—knowledge about the dynamics41

of state evolution—in contrast to the declarative knowledge in an object frame that describes the states42

themselves (Figure 1). The combination of files and schemata is sufficient to predict future states43

of visual environments, critical for planning and goal-seeking behavior. For the sake of simplifying44

terminology, we will refer to object files as ‘files’.45

Object-oriented programming (OOP) provides a way to think about the relationship between files46

and schemata. In OOP, each object is an instantiation of an object class and it has a self-contained47

collection of variables whose values are specific to that object and methods that operate on all48

instances of the same class. The relation between objects and methods mirrors the relationship49

between our files and schemata. In both OOP and our view of visual cognition, a key principle is50

the encapsulation of knowledge: internal details of objects (files) are hidden from other objects, and51

methods (schemata) are accessible to all and only objects to which they are applicable.52

The modularity of knowledge in OOP supports human programmers in writing code that is readily de-53

bugged, extended, and reused. We conjecture that the corresponding modularity of files and schemata54

will lead to neural network models with more efficient learning and more robust representations.55

Modularity is the guiding principle of the model we propose, which we call SCOFF, an acronym for56

schema / object-file factorization. Like other neural net models with external memory [e.g., 11, 5, 14],57

SCOFF includes a set of slots which are each designed to contain a file (Figure 2). In contrast to most58

previous external memory models, the slots are not passive contents waiting to be read or written by59

an active process, but are dynamic, modular elements that seek information in the environment that60

is relevant to the object they represent, and when critical information is observed, they update their61

states, possibly via information provided by other files. Event-based OOP is a good metaphor for this,62

where external events can trigger the action of objects.63

As Figure 2 suggests, there is a factorization of declarative knowledge—the properties and history64

of an object, as contained in the files—and procedural knowledge—the way that object behave, as65

contained in the schemata. Whereas declarative knowledge can change rapidly, procedural knowledge66

is more stable over time. This factorization allows any schema to be applied to any file, when the file67

deems it appropriate. The model design ensures systematicity in the operation of a schema, regardless68

of the slot to which a file is assigned. Similarly, a file can access any applicable schema regardless69

of which slot it sits in. Furthermore, a schema can be applied to multiple files at once, and multiple70

schemata could be applied to a file (e.g., Figure 1). In OOP, systematicity is similarly achieved by71

virtue of the fact that the same method can be applied to any object instantiation and that multiple72

methods exist which can be applied to an object of the appropriate type.73

Our key contribution is to demonstrate the feasibility and benefit of factorizing declarative knowledge74

(the properties and history of an object) and procedural knowledge (the way objects behave). This75

2

factorization enforces not only an important form of systematicity, but also of exchangeability: the76

model behaves exactly the same regardless of the assignment of schemata to schemata-slots and the77

assignment of objects to file-slots. With this factorization, we find improved accuracy of next-state78

prediction models and improved interpretability of learned parameters.79

2 The schemata / object-file factorization (SCOFF) model80

SCOFF (Figure 2) is an architectural backbone that supports the separation of procedural and declar-81

ative knowledge about dynamical entities (objects) in an input sequence. The input sequence82

{x1, . . . ,xt, . . . ,xT }, indexed by time step t is processed by a CNN to obtain a deep embedding,83

{z1, . . . , zt, . . . , zT }, which then serves as input to a network with nf files and ns schemata.84

Files are active processing components that maintain and update their internal state. Essentially, a file85

is a layer of GRU or LSTM units with three additional bits of machinery, which we now describe.86

1. Our earlier metaphor identifying files in SCOFF with objects in OOP is apropos in the sense87

that files are event driven. The file operates in a temporal loop that continuously awaits88

relevant signals in the input. Relevance is determined by the file’s current state, and its89

determination is based on a special case of a key-value attention mechanism, which we90

describe in detail below. When a file is triggered by an input, the file updates by deciding91

which schema to apply. When it is not triggered, its state remains unchanged for the next92

time step. (The triggering mechanism is thus distinct from input gating in a GRU [3] or93

LSTM unit: it is all-or-none, and it operates holistically on all units in the layer.) At most94

nsel files can thus be activated at each time step, based on a competition between files. The95

competition is necessary to ensure differentiation of the files during training, as we will96

demonstrate shortly.97

2. Triggering causes a file to perform a one-step update of its state layer of GRU or LSTM units,98

conditioned on the input signal received. The weight parameters needed to perform this99

update, which we will denote generically as ✓, are not—as in a standard GRU or LSTM—100

internal to the layer but rather are provided externally. Each schema j is nothing more than a101

set of parameters ✓j which can be plugged into this layer. SCOFF uses a key-value attention102

mechanism to perform soft selection of the appropriate schema (parameters).103

3. Triggered files may also seek information from other files, again using a key-value attention104

mechanism to query each other file, matching its query to keys provided by each other105

file, and soft selecting the best matching files to incorporate the values provided by the106

corresponding files.107

This operation cycle ensures that files can update their state in response to both external input and108

the internal state comprised of all the files contents. This updating is an extra wrapper around the109

ordinary update that takes place in a GRU or LSTM layer. It provides additional flexibility in that110

(1) files may simply remain dormant and fully ignore an input, (2) files can switch their dynamics111

from one input to the next conditioned on their internal state, (3) files are modular in that they do not112

communicate with one another except via state-dependent selective message passing.113

Object
file

Object
file

Object
file

Object
file

Visual
input

Sc
he

m
a

Sc
he

m
a

Sc
he

m
a

SCOFF

Prediction

Figure 2: Our SCOFF model.
Schemata are sets of param-
eters that specify the dynam-
ics of objects. Object files
are active modules that main-
tain the time-varying state of
an object, seek information
from the input, and select
schemata for updating.

3

factorization enforces not only an important form of systematicity, but also of exchangeability: the76

model behaves exactly the same regardless of the assignment of schemata to schemata-slots and the77

assignment of objects to file-slots. With this factorization, we find improved accuracy of next-state78

prediction models and improved interpretability of learned parameters.79

2 The schemata / object-file factorization (SCOFF) model80

SCOFF (Figure 2) is an architectural backbone that supports the separation of procedural and declar-81

ative knowledge about dynamical entities (objects) in an input sequence. The input sequence82

{x1, . . . ,xt, . . . ,xT }, indexed by time step t is processed by a CNN to obtain a deep embedding,83

{z1, . . . , zt, . . . , zT }, which then serves as input to a network with nf files and ns schemata.84

Files are active processing components that maintain and update their internal state. Essentially, a file85

is a layer of GRU or LSTM units with three additional bits of machinery, which we now describe.86

1. Our earlier metaphor identifying files in SCOFF with objects in OOP is apropos in the sense87

that files are event driven. The file operates in a temporal loop that continuously awaits88

relevant signals in the input. Relevance is determined by the file’s current state, and its89

determination is based on a special case of a key-value attention mechanism, which we90

describe in detail below. When a file is triggered by an input, the file updates by deciding91

which schema to apply. When it is not triggered, its state remains unchanged for the next92

time step. (The triggering mechanism is thus distinct from input gating in a GRU [3] or93

LSTM unit: it is all-or-none, and it operates holistically on all units in the layer.) At most94

nsel files can thus be activated at each time step, based on a competition between files. The95

competition is necessary to ensure differentiation of the files during training, as we will96

demonstrate shortly.97

2. Triggering causes a file to perform a one-step update of its state layer of GRU or LSTM units,98

conditioned on the input signal received. The weight parameters needed to perform this99

update, which we will denote generically as ✓, are not—as in a standard GRU or LSTM—100

internal to the layer but rather are provided externally. Each schema j is nothing more than a101

set of parameters ✓j which can be plugged into this layer. SCOFF uses a key-value attention102

mechanism to perform soft selection of the appropriate schema (parameters).103

3. Triggered files may also seek information from other files, again using a key-value attention104

mechanism to query each other file, matching its query to keys provided by each other105

file, and soft selecting the best matching files to incorporate the values provided by the106

corresponding files.107

This operation cycle ensures that files can update their state in response to both external input and108

the internal state comprised of all the files contents. This updating is an extra wrapper around the109

ordinary update that takes place in a GRU or LSTM layer. It provides additional flexibility in that110

(1) files may simply remain dormant and fully ignore an input, (2) files can switch their dynamics111

from one input to the next conditioned on their internal state, (3) files are modular in that they do not112

communicate with one another except via state-dependent selective message passing.113

Object
file

Object
file

Object
file

Object
file

Visual
input

Sc
he

m
a

Sc
he

m
a

Sc
he

m
a

SCOFF

Prediction

Figure 2: Our SCOFF model.
Schemata are sets of param-
eters that specify the dynam-
ics of objects. Object files
are active modules that main-
tain the time-varying state of
an object, seek information
from the input, and select
schemata for updating.

3

Object Files and Schemata: factorizing declarative and
procedural knowledge in dynamical systems
Goyal, Lamb, Gampa, Blundell, Mozer, Beaudoin, Levine &
Bengio, submitted, 2020

• Sparse factor graph in space of high-level semantic variables

• Semantic variables are causal: agents, intentions, controllable objects

• Distributional changes due to localized causal interventions (in semantic space)

• Simple mapping between high-level semantic variables / thoughts and words / sentences

• Shared ’rules’ across instance tuples (as arguments), requiring variables & indirection

• Meaning (e.g. causal graph or an encoder) is stable & robust wrt changes in
distribution

• Credit assignment is only over short causal chains

SOME SYSTEM 2 INDUCTIVE PRIORS
all inspired by human cognition

60

Fast and slow weights
• Slow weights

○ Ground-truth causal graph

• Fast weights
○ Adapt to local (intervention) changes

Meta-Learning =
Multiple Time Scales of Learning

attention mechanisms, an input attention and a communication attention. These attention mechanisms89

define which modules to activate, and how to combine them to enable a sparse communication and an90

appropriate information exchange. The parameters of these attention mechanisms are meta-learned,91

by using much longer spans of agent’s experiences collected over the meta-episode to capture long-92

term dependencies and connectivity patterns of the modules. During this phase, the parameters of the93

recurrent modules are not changed. Since this phase looks at much longer time horizons, the number94

of updates to the attention parameters is lower, and the updates happen much more slowly.95

Inner loop for fast
learning of module

parameters

Outer loop for meta
learning of attention

parameters

Individual Episodes

RBG input
frames

Meta Episode

Fast Inner Updates

Slow Outer Updates

Individual Episodes

Meta Episode

Fa
st

up

da
te

Fa
st

up

da
teFast Inner Updates

Slow Outer Updates

Figure 2: Meta-Attention
setup: The two meta learn-
ing loops (fast and slow)
learn different parameters
of the model at different
timescales

We describe the different components of the model and the two learning phases in more details below.96

We hypothesize, and validate experimentally, that this approach of having modular networks in which97

different parts of the model are learnt over different timescales performs better in several aspects than98

a single large monolithic network in which all parameter updates happen at the same time.99

2.1.1 Ensemble of Sparsely Interacting Recurrent Modules100

Ensemble of Interacting Modules: We follow the similar setup as RIMs [6], which consists of101

an ensemble of modules, each operating with their own independent dynamics and interacting with102

each other through the bottleneck of attention. The proposed framework consists of a single layered103

recurrent structure such that at timestep t, the hidden state ht is decomposed into n modules with104

their own independent hidden states ht,k for k = 1, ...n modules. Out of all these n modules, at any105

given timestep, only a subset of these modules are activated, and the updates for the hidden states106

follow a three-step process. First, a subset of modules is selectively activated based on their relevance107

to the current input. Second, the activated modules independently process the information made108

available to them using their internal dynamics. Third, the active modules communicate with the109

other modules through a bottleneck of attention to sparsely share information.110

Selective Activation of Modules Using Input Attention: Out of the n modules, only a sparse111

subset k of them are active at any given point, and only the parameters of this subset of modules are112

updated in every update of the fast loop. Each module generates queries which are combined with113

the keys and values obtained from the concatenation of the actual input xt and a dummy null input114

Ø to get attention scores and an attention modulated input. Based on these attention scores, a fixed115

number (k) of the n modules are activated. The modules that pay the least attention to a dummy null116

vector Ø in the input, i.e., pay the most attention to the actual input xt, get activated.117

Let ht,j represent the hidden state of the jth module at timestep t, and ✓j represent the parameters of118

module j (different modules have different parameters). First, given an input, each module creates119

queries which are combined with the keys and values obtained from the input xt to get an attention120

score for each module. These attention scores are then used to create a sparse subset of top k most121

relevant modules which get activated. Let this set of activated modules at timestep t be St, and let the122

updated hidden states of module j at time t be h̃t,j . Then, each module in active set St updates its123

hidden state as per its default recurrent dynamics, Dk such that h̃t,j = Dk(ht,j), and the modules124

which are not activated have their hidden states remain unchanged as h̃t,j = ht,j .125

Communication between different modules: Each of the activated module gets to interact with126

all other modules, each of which is producing keys and values as output. This communication happens127

through the communication attention, in which each activated module generates queries on the other128

modules output keys and values to read information from any other module (both activated and129

non-activated). This helps the activated modules capture more context and other relevant information130

contained in all other modules.131

3

Meta-Attention Networks
RIMs +
meta-
learning

Fast learning:
modules

Slow learning:
attention
mechanism

Experiments on
Baby AI tasks
(Kanika Madan
et al 2020,
submitted)

• Sparse factor graph in space of high-level semantic variables

• Semantic variables are causal: agents, intentions, controllable objects

• Distributional changes due to localized causal interventions (in semantic space)

• Simple mapping between high-level semantic variables / thoughts and words / sentences

• Shared ’rules’ across instance tuples (as arguments), requiring variables & indirection

• Meaning (e.g. grounded by an encoder) is stable & robust wrt changes in distribution

• Credit assignment is only over short causal chains

SOME SYSTEM 2 INDUCTIVE PRIORS
all inspired by human cognition

64

Rosemary Ke, Anirudh Goyal, Olexa Bilaniuk, Jonathan Binas, Mike Mozer, Yoshua Bengio,

NeurIPS 2018

Sparse Attentive Backtracking

The attention mechanism of the associative memory picks up past memories
which match (associate with) the current state, maybe be an alternative to BPTT for learning
very long-term dependencies.

Causal reasoning over events factor graph

• Node of graph = event at particular time, involving a small set of variables

• Factor = causal mechanism

• Directed edges: from past to future, causal direction

as

A

ht 6J
Time

LEARNING TO REASON

● Reasoning and planning is inference and is inherently
computationally expensive

● Brains do not use exhaustive search but instead generate
good candidates

● Conscious processing seems involved in evaluating them for
global coherence across the brain’s modules

● Attention mechanisms are part of the reasoning policy,
converting declarative knowledge into selective
computations for inference and decision-making

67

CONTRAST WITH THE SYMBOLIC AI PROGRAM

Avoid pitfalls of classical AI rule-based symbol-manipulation

• Need efficient large-scale learning

• Need semantic grounding in system 1 (implicit knowledge)

• Need distributed representations for generalization

• Need efficient = trained search (also system 1)

• Need uncertainty handling

68

But want

• Systematic generalization

• Factorizing knowledge in small exchangeable pieces

• Manipulating variables, instances, references & indirection

69

CONSCIOUSNESS PRIORS

consciousness

system 2

systematic
generalization

out-of-distribution
generalization

meta-learning

agency

non-stationarity multi-agent
interactions

language

causality

reasoning

modularity/
compositionality

attention

indirection &
variables

• Sparse factor graph in space of high-level
semantic variables

• Meaning (e.g. grounded by an encoder) is stable
& robust wrt changes in distribution

• Semantic variables are causal: agents,
intentions, controllable objects

• Simple mapping between high-level semantic
variables / thoughts and words / sentences

• Shared ’rules’ across instance tuples (as
arguments), w/ variables & indirection

• Distributional changes due to localized causal
interventions (in semantic space)

• Credit assignment is only over short causal
chains

We have a responsibility

70

ML going out of labs, into society
• ML is not just a research question anymore
• ML-based products are being designed and deployed

è new responsibility for AI scientists and engineers
à wisdom race, as power of technology increases

71

THANK YOU!

